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Figure 10.3 For Example 10.1; wave
travels along —a,.
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PRACTICE EXERCISE 10.1

In free space, H = 0.1 cos (2 X 108 — kx) a, A/m. Calculate

(@) k,h,and T
(b) The time ¢, it takes the wave to travel M/8
(c) Sketch the wave at time t,.

Answer: (a) 0.667 rad/m, 9.425-m, 31.42 ns, (b) 3.927 ns, (c) see Figure 10.4.

10.3 WAVE PROPAGATION IN LOSSY DIELECTRICS

As mentioned in Section 10.1, wave propagation in lossy dielectrics is a general case from
which wave propagation in other types of media can be derived as special cases. Therefore,
this section is foundational to the next three sections.
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EXAMPLE 10.2

Electromagnetic Wave Propagation

We define the surface or skin resistance R; (in Q/m?) as the real part of the 5 for a good
conductor. Thus from eq. (10.55)

(10.56)

This is the resistance of a unit width and unit length of the conductor. It is equivalent to the
dc resistance for a unit length of the conductor having cross-sectional area 1 X §. Thus for
a given width w and length €, the ac resistance is calculated using the familiar dc resistance
relation of eq. (5.16) and assuming a uniform current flow in the conductor of thickness 8,
that is,

Re=—F(= (10.57)

where §' = dw. For a conductor wire of radius a (see Figure 10.9), w = 2xa, so

¢
R, o2mad _ a
Re £ 2
owd®

Since 8 << a at high frequencies, this shows that R, is far greater than R,.. In general, the
ratio of the ac to the dc resistance starts at 1.0 for dc and very low frequencies and in-
creases as the frequency increases. Also, although the bulk of the current is nonuniformly
distributed over a thickness of 56 of the conductor, the power loss is the same as though it
were uniformly distributed over a thickness of § and zero elsewhere. This is one more
reason why & is referred to as the skin depth.

A lossy dielectric has an intrinsic impedance of 200 /30° @ at a particular frequency. If, at
that frequency, the plane wave propagating through the dielectric has the magnetic field
component

- 1
H=10e ‘”‘cos(wt - Ex) a, A/m
find E and o.. Determine the skin depth and wave polarization.

Solution:
The given wave travels along a, so that a, = a,; ay = a,, so
—aE:aanH:axxay':az

or

ap = —a,
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Also H, = 10, so

E . .
7 =M= 200/30° =200 '™ — E, = 2000’

Q

Except for the amplitude and phase difference, E and H always have the same form. Hence
E = Re (2000’0 e™'ay)
or

E= -2 cos(wt - g + %) a, kV/m

Knowing that 3 = 1/2, we need to determine «. Since

and
2
Bzw\ﬁ—e 1+ | = +1}
2 we
|:O':|2 172
1+ |—| —1
@ _ we
s 12
1+{—] +1
we

Butwis = tan 26, = tan 60° = \/5 Hence,

or

and

1
6=a=2\/§=3.464m

The wave has an E, component; hence it is polarized along the z-direction.
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PRACTICE EXERCISE  10.2

A plane wave propagating through a medium with &, = 8, u, =2 has E =05
e 2% sin(10% — Bz) a, V/m. Determine

(@ B

(b) The loss tangent

(c) Wave impedance

(d) Wave velocity

(e) H field

Answer:  (a) 1.374 rad/m, (b) 0.5154, (c) 177.72 /13.63° ©, (d) 7.278 X 10 m/s,
(e) 2.817¢ % sin(10° 1 — Bz ~ 13.63°)a, mA/m.

In a lossless medium for which y = 607, u, = 1, and H = —0.1 cos (wt — ) a, +

EXAMPLE 10.3
0 0.5 sin (wt — z)a, A/m, calculate &,, w, and E.

Solution:
In thiscase, 0 = 0, = 0,and 8 = 1, so

B B e 1207

or
\/;r:lz_oizgﬁzz - g =4
7 607
8 = Vi = Vo Vs, = £ Vi = 2
or

13 x 108
"’:%:(—5—): 1.5 X 10® rad/s

From the given H field, E can be calculated in two ways: using the techniques (based on
Maxwell’s equations) developed in this chapter or directly using Maxwell’s equations as in
the last chapter.

Method 1: To use the techniques developed in this chapter, we let

E:HI+H2

I
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where H, = —0.1 cos (wt — z) a, and H, = 0.5 sin (vt — z) a, and the corresponding
electric field

E:E]+E2

where E; = E|, cos (ot — z) ag, and E, = E,, sin (wt — z) ag,. Notice that although H
has components along a, and a,, it has no component along the direction of propagation; it
is therefore a TEM wave.

For E4,
ag = —(ay X ay) = —(a, X ~a) = a,
E\, = nH;y, = 607 (0.1) = 67
Hence
E, = 6w cos (wt — 7) a,
For E,,
ap, = —(ay X ap) = —(a, X a,) = a,
E,, = n Hy, = 607 (0.5) = 307
Hence

E, = 307 sin (wt — 2)a,
Adding E, and E, gives E; that is,
E = 9425sin (1.5 X 10°% — z)a, + 18.85 cos (1.5 X 10% — z) a, V/m

Method 2: We may apply Maxwell’s equations directly.

1
VXHiﬂﬁwﬁE - E=~ijHm
t €
0
because o = 0. But
49 9 9
ax 9y 9z oH, oH
VXH= = ——2g + —Eq
H() Hyz) 0 gz T g M

= Hy, cos (wt — z) a, + Hy, sin (wt — 2)a,

where H;, = —0.1 and H,, = 0.5. Hence

1 Hy, . Hy,
E:—fVXHw:—imuw~@m——Lmuw—m%
& EW Ew

= 94.25 sin(wt — 7) a, + 18.85 cos(wt — z) a, V/m

as expected.
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EXAMPLE 10.4

PRACTICE EXERCISE 10.3

A plane wave in a nonmagnetic medium has E = 50 sin (10% + 22) a, V/m. Find

(a) The direction of wave propagation
() N.f,and ¢,
(c) H

Answer: (a) along —z direction, (b) 3.142 m, 1592 MHz, 36, (c¢) 0.7958
sin(10% + 22) a, A/m.

A uniform plane wave propagating in a medium has
E = 2¢”*sin (10°% — Bz) a, V/m.

If the medium is characterized by €, = 1, u, = 20, and ¢ = 3 mhos/m, find «, 3, and H.

Solution:

We need to determine the loss tangent to be able to tell whether the medium is a lossy di-
electric or a good conductor.

3
O - 3393 3> |

108 X [ X —
367

showing that the medium may be regarded as a good conductor at the frequency of opera-

tion. Hence,
[ uwo {4% X 1077 X 20(108)(3)}”2
a = B = —_— =
2 2
=614
o =614Np/m, B = 61.4rad/m
Also
il = [pw _ [4m X 1077 X 20(10%) |
U o 3
{8007
V 3
@2, =~ =333 — 0§, =45 =/
Hence
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where
aH_aanE azxa\__ax
and
E 3
H =-2=2.] =69.1 X 107°?
] 800w
Thus

H=—-69.1¢ ““*sin (108z — 61.427 — %) a, mA/m

PRACTICE EXERCISE 104
A plane wave traveling in the +y-direction in a lossy medium (e, = 4, u, = 1,
o = 1072 mhos/m) has E = 30 cos (10°7 r + 7/4)a, V/m at y = 0. Find

(@ Eaty=1m,t=2ns

(b) The distance traveled by the wave to have a phase shift of 10°

(¢) The distance traveled by the wave to have its amplitude reduced by 40%
(d) Haty = 2m,t = 2ns ‘

Answer: (a) 2.787a, V/m, (b) 8.325 mm, (c¢) 542 mm, (d) —4.71a, mA/m

A plane wave E = E_ cos (wt — (37) a, is incident on a good conductor at z = 0. Find the
current density in the conductor.

Solution:

Since the current density J = oE, we expect J to satisfy the wave equation in eq. (10.17),
that is,

Vi, - v), =0
Also the incident E has only an x-component and varies with z. Hence J = J/(z, f) a, and
d2
_‘, sx 2J sx T 0
e Y Y,
which is an ordinary differential equation with solution (see Case 2 of Example 6.5)

Jo=Ae " + Be™"
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The constant B must be zero because J,, is finite as z — . But in a good conductor,
o >> wesothat = 8 = 1/6. Hence

a+n

y=at+jijB=al +j)= 5

and
J. = Ae {1t
SX

or

Joo = J(0) 7P

where J,, (0) is the current density on the conductor surface.

PRACTICE EXERCISE 10.5

Due to the current density of Example 10.5, find the magnitude of the total current
through a strip of the conductor of infinite depth along z and width w along y.

J(0Owd
Answer: —————
V2

For the copper coaxial cable of Figure 7.12,leta = 2 mm, b = 6 mm, and 1 = 1 mm. Cal-

XAMPLE 10.
EXAMPLE 10.6 culate the resistance of 2 m length of the cable at dc and at 100 MHz.

Solution:
Let
R = R0 + Rf
where R, and R, are the resistances of the inner and outer conductors.
At dc,
4 ¢ 2
R, =—= 5 = 7 =5 = 2.744 mQ
oS oma 58 X 10'#x[2 X 107"]
¢ ¢ ¢
R, =— = 2 2 2
oS  on[lb+ 1" — b ow[t” + 2bi]
_ 2
58 X 1077 [1 +12] x 107°
= 0.8429 mQ

Hence Ry, = 2.744 + (0.8429 = 3.587 mQ
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At f = 100 MHz,
R RE_ € € [
! w od2ma 27a g
B 2 \/7r>< 10® X 47 X 1077
e X2 X% 1073 5.8 X 107
=0410Q

Since 6 = 6.6 um << t = | mm, w = 2xb for the outer conductor. Hence,

_RE_ €

R, =—
w 27hb o
_ 2 \/7r>< 10° X 47 X 10
2 X6 X 1077 58 X 10
=0.1384 Q

Hence,
R, = 041 + 0.1384 = 0.5484 Q

which is about 150 times greater than Ry.. Thus, for the same effective current i, the ohmic
loss (i°R) of the cable at 100 MHz is far greater than the dc power loss by a factor of 150.

PRACTICE EXERCISE 10.6

For an aluminum wire having a diameter 2.6 mm, calculate the ratio of ac to dc re-
sistance at

(a) 10 MHz
(b) 2 GHz

Answer: (a)24.16, (b) 341.7.

.7 POWER AND THE POYNTING VECTOR

As mentioned before, energy can be transported from one point (where a transmitter is
located) to another point (with a receiver) by means of EM waves. The rate of such energy
transportation can be obtained from Maxwell’s equations:
dH
VXE = LY (10.58a)

oE
VXH=¢E + 8; (10.58b)
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and

E? ]
Pz, 1) = 2 ¢72% cos (wt — Bz) cos (wt — Bz — 0, a,

7/
E(2) —2az
= ﬁe “[cos 8, + cos 2wt — 26z — 0,)] a;
Ui

(10.66)

1
since cos A cos B = 5 [cos (A — B) + cos (A + B)]. To determine the time-average
Poynting vector P ,,.(z) (in W/m?), which is of more practical value than the instantaneous
Poynting vector P(z, t), we integrate eq. (10.66) over the period T = 27/w; that is,

T
Pave(d) = % J P(z, 1) dt (10.67)
0

It can be shown (see Prob. 10.28) that this is equivalent to

: 1
D Poe@) = 5 Re (E; X H¥) (10.68)

By substituting eq. (10.66) into eq. (10.67), we obtain

2

| EO —2az
P2 = e > cosb,a, (10.69)
‘ 2|

|
S

The total time-average power crossing a given surface S is given by

P = f Pave * dS (10.70)
S

We should note the difference between P, P,.., and P,.. P(x, y, z, 1) is the Poynting
vector in watts/meter and is time varying. P,..(x, y, z) also in watts/meter is the time
average of the Poynting vector P; it is a vector but is time invariant. P, is a total time-
average power through a surface in watts; it is a scalar.

L . .
EXAMPLE 10.7 | In a nonmagnetic medium

E = 4sin (27 X 10’t — 0.8x) a, V/m
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Find

@ &.7
(b) The time-average power carried by the wave

(c) The total power crossing 100 cm? of plane2x + y =5

Solution:

(a) Since o = 0 and 8 # w/c, the medium is not free space but a lossless medium.
B=08, w=27 X 10", p = p,(nonmagnetic), & = &8,

Hence
B:w\//;:w V“ososr:%\/‘g—r

or

Ve = B _ 083 10% _ 12

W 27 X 107 m
e, = 14.59
_ Bl e 1207 T o
n \/; "\ ee \/S—r = 1207 0 107
= 98.7Q

E2
b) P=EXH-= —n—(’sinz(wt - Bx)a,

1 (" E? 16
QPM=~J Pdt=_—a,=——_——a,
T, 27 2 X 107
= 81 a, mW/m’

(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),

a _ 2a,+a,
"\

Hence the total power is

Pae = J 9)ave'ds:g)ave'san

il

(81 X 107%a,) - (100 X 10™% {

2a, + ay}

V5

162 X 107
= = 7245 uW

Vs
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o, =0

Ep(l+T)

Eia(l =T

Figure 10.13 Standing waves due to reflection at an interface between two
lossless media; A = 27/6;.

or

s—1
s+ 1

IT| = (10.91)

Since |T'| = 1, it follows that 1 = s < %. The standing-wave ratio is dimensionless and it
is customarily expressed in decibels (dB) as

sindB = 201logy, s (10.92)

In free space (z = 0), a plane wave with
H = 10 cos (10% — B8z) a, mA/m

is incident normally on a lossless medium (¢ = 2¢,, u = 8p,) in region z = 0. Determine
the reflected wave H,, E, and the transmitted wave H,, E,.

Solution:
This problem can be solved in two different ways.

Method 1: Consider the problem as illustrated in Figure 10.14. For free space,

w
61:—-:———_—_—
C
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E Figure 10.14 For Example 10.8.
E
O ®
§ free space lossless dielectric
: Mo, €o 8y, e,
- 7
z=0

For the lossless dielectric medium,

) 4
Br=0w Mszw\//toso\/#rar=;'(4)=4ﬁ;=§

:J@:/@/&zz
2 e & €, Mo

Given that H; = 10 cos (10% — 8,z) a,, we expect that

E, = E, cos (10% — B;2) ag,

where
ag = ay X a, = a, Xa, = —a,
and
E,=mH, = 1079,

Hence,

E; = —10n, cos (10% — B,2) a, mV/m
Now

Ero _p_mzm _ 2107 1m 1

E; mtg 29+, 3

E,=1E,

3

Thus

E, = ~§ 7o COS (108: + %z) a, mV/m
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from which we easily obtain H, as

10 1
H, = 3 cos (108t + gz) a, mA/m

Similarly,
E, 4 4
E—m=r=1+1‘=§ or Em“3Em
Thus
E, = E,, cos (10° — B,2) a,
where a; = ag = —a,. Hence,

40 4
E, = —n,cos <108t - = z) a, mV/m
3 3
from which we obtain
20 4
H, = ?cos (108t - §z> a, mA/m

Method 2: Alternatively, we can obtain H, and H, directly from H; using

H, H,
T p oand =g
[11'0 Hi 2
Thus
1 10
Hro == Hio =T
3 3
4 7, 2 20
H =—- H. . =2H =
to 3 21]0 I 3 H 3
and

10
H, = 3 cos (10° + B,z) a, mA/m

20
H, = 3 cos (10% — B,2) a, mA/m

as previously obtained.
Notice that the boundary conditions at z = 0, namely,

40
E0) + E(0) = E(0) = =3 Mo COS (10%) a,

447
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’ and

20 8
’ H,(0) + H,(0) = H,(0) = 3 cos (10%) a,
|

are satisfied. These boundary conditions can always be used to cross-check E and H.

PRACTICE EXERCISE 10.8

A 5-GHz uniform plane wave E; = 10 ¢ < a, V/m in free space is incident nor-
mally on a large plane, lossless dielectric slab (z > 0) having ¢ = 4g,, u = u,. Find
the reflected wave E, and the transmitted wave E,,.

Answer: —3.333 exp(j8,z) a, V/m, 6.667 exp(—jB,z) a, V/im where 8, = 26, =
2007/3.

EXAMPLE 10.9 Given a uniform plane wave in air as

E; = 40 cos (wf — Bz) a, + 30 sin (wt — Bz) a, V/m

(a) Find H,.
(b) If the wave encounters a perfectly conducting plate normal to the 7 axis at z = 0, find
the reflected wave E, and H,.

(c) What are the total E and H fields for z < 07?
(d) Calculate the time-average Poynting vectors for z < Oand z = 0.

Solution:
(a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of
two waves E;; and E;,, where

E; = 40 cos (wt — B2) a,, E;, = 30 sin (wt — 82) a,

At atmospheric pressure, air has &, = 1.0006 = 1. Thus air may be regarded as free space.
LetH; = H;, + H,,.

H;, = H;;, cos (wt — 87) ay,
where

. _Ey, 40 1
o=y 120 37

aleaanE:a:Xax:ay
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Hence
1
H, = gcos (wt — B2) a,
Similarly,
H,, = Hp, sin (wt — Bz) ay,
where
g, =Lz 30 1
207 e 120m 4w
aHz=ak><aE=az><ay= —a,
Hence
|
H;, = ——sin (wt — B2) a,
4
and

H,=H, + Hp
1 1
= ———sin (wt — B2) a, + 7—cos (wt — Bz) a, mA/m
4 3r

This problem can also be solved using Method 2 of Example 10.3.
(b) Since medium 2 is perfectly conducting,

02
——>>1 - <<
we, 2 m

that is,
I'= -1, 7=0
showing that the incident E and H fields are totally reflected.
E,=TE,=-E
Hence,
E, = —40 cos (wt + Bz) a, — 30 sin (w? + Bz) a, V/m

H, can be found from E, just as we did in part (a) of this example or by using Method 2 of
the last example starting with H;. Whichever approach is taken, we obtain

1 1
H, = 7—cos (wt + 82) a, — — sin (wt + B2)a, A/m
3T 47
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(¢) The total fields in air
E,=E +E  and H, =H +H,

can be shown to be standing wave. The total fields in the conductor are

(d) Forz =0,
E.|* 1
g)lave = |21171| K = 27} [Ei)az - E%aaz]
1
= 5a0m [(40% + 30%a, — (40 + 30%)a,]
=0
Forz = 0,
E,? E2
@2ave:@ kzﬁaz:()
2, 2,

because the whole incident power is reflected.

PRACTICE EXERCISE 10.9

The plane wave E = 50 sin (wf ~ 5x)a, V/m in a lossless medium (u = 4p,,
£ = g,) encounters a lossy medium (u = p,, £ = 4&,, 0 = 0.1 mhos/m) normal to
the x-axis at x = 0. Find

(@) T, 7r,and s

(b) E, and H,

(c) E;and H, ‘

(d) The time-average Poynting vectors in both regions

Answer: (a) 0.8186 /171.1°,0.2295 /33.56°, 10.025, (b) 40.93 sin (wt + 5x +
171.9°) a, V/m, —54.3 sin (wt + S5x + 171.9° a, mA/m,
(c) 11.47 ¢~%%"sin (wr —7.826x + 33.56°) a, V/m, 120.2 ¢ **sin
(0t — 7.826x — 4.01°) a, mA/m, (d) 0.5469 a, W/m®, 0.5469 exp
(—12.04x) a, W/m®.
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EXAMPLE 10.10 An EM wave travels in free space with the electric field component
Es = 100 ej(0.866y+0.52) a, V/m
Determine

(a) wand A
(b) The magnetic field component

(c) The time average power in the wave

Solution:
(a) Comparing the given E with

E, =E, KT = Eoej(er+k\.y+k:z) a,
it is clear that

k, =0, k, = 0.866, k,= 0.5
Thus

k=VE+ I+ K= V(0866)7 + (057 =1

But in free space,

A
Hence,
w=kc =73 X 10%rad/s
2
)\=77r=27r=6.283m

(b) From eq. (10.96), the corresponding magnetic field is given by

1
H,= —k X E,
U
(0.866a, + 0.5a,)

= = ¢ X 100a,e™"
47 X 1077 X 3% 10

or
H, = (1.33a, — 2.3 a,) /%7059 mA/m

(c) The time average power is

1 o _ Ed
g)avc = ERe (Es X H\) = Zak
100)*
_ 190 (0.866 a, + 0.5 a,)
2(120m) : :
= 1149 a, + 6.631 a, W/m®
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PRACTICE EXERCISE 10.10

Rework Example 10.10 if
E = (10a, + 5a,) cos(wt + 2y — 42) V/m

in free space.

Answer: (a) 1.342 X 107 rad/s, 1.405 m, (b) —29.66 cos (1.342 X 10°t + 2y —
4z) a, mA/m, (c) —0.07415 a, + 0.1489 a, W/m”.

A uniform plane wave in air with
E = 8cos(wt — 4x — 3z)a, V/m
is incident on a dielectric slab (z = 0) with u, = 1.0, &, = 2.5, ¢ = 0. Find
(a) The polarization of the wave
(b) The angle of incidence

(¢c) The reflected E field
(d) The transmitted H field

Solution:

(a) From the incident E field, it is evident that the propagation vector is

k,.:4ax+3az—>k,.:5=w\/@:%

Hence,
w = 5¢ =15 X 10% radss.

A unit vector normal to the interface (z = 0) is a,. The plane containing k and a_ is
y = constant, which is the xz-plane, the plane of incidence. Since E; is normal to this
plane, we have perpendicular polarization (similar to Figure 10.17).

(b) The propagation vectors are illustrated in Figure 10.18 where it is clear that

k; 4
.= X - —f. = .1 o
tan 0, k 3 6, = 53.13

iz ~

Alternatively, without Figure 10.18, we can obtain 0, from the fact that 0, is the angle
between k and a,, that is,

da, + 3a:> 3
TR =

5 5

cos(?,-zak-a”:<
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(c) An easy way to find E, is to use eq. (10.116a) because we have noticed that this
problem is similar to that considered in Section 10.9(b). Suppose we are not aware of this.

Let

E, =E,cos(wt — Kk, '1r)a,

which is similar to form to the given E;. The unit vector a, is chosen in view of the fact that

the tangential component of E must be continuous at the interface. From Figure 10.18,
k., = k.a, — k.a,
where
k.. = k,sin,, k., = k,cos 8,
But 0, = 6;and k, = k; = 5 because both &, and k; are in the same medium. Hence,
k, = 4a, — 3a_
To find E,,,, we need 8,. From Snell’s law

. ny . CV &
sinf, = —sinf, = ———

2 CV o€

_ sin53.13°

V25

sin 6,

or
9, = 30.39°
Em
FJ_ = ‘E_

1

_ mpcosf; — qcos b,

1, cos §; + 1, cos 6,

Figure 16.18 Propagation vectors
Example 10.11.

of
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e 377
where g, = 5, = 377, M = /L;_.g..z Vi 238.4

_238.4 cos 35.13° — 377 cos 30.39°

LT 5384 cos 53.13° + 377 cos 30395 00

Hence,
E,=T,E,=—-0.389(8) = —3.112
and
E, = —3.112 cos (15 X 10% — 4x + 3z)a, V/m
(d) Similarly, let the transmitted electric field be
E,=E,cos (wt — k,-1)a,

where

w
k=B = 0oVper = c V br,&r,
15 X 108
=——7V1 X 25 =17906

3 x 108
From Figure 10.18,
ky, =k sinf, =4
k,, = k;cos 6, = 6.819
or
k, = 4a, + 6819 a,
Notice that k;, = k,, = k,, as expected.

E, _ 2 9, cos 0;
Ei N2 COS 0[ + 771 COS 0,
2 X 238.4 cos 53.13°

T 2384 cos 53.13° + 377 cos 30.39°
= 0611

T, =

The same result could be obtained from the relation 7, = 1 + I',. Hence,
E,=171 E,=0611 X8 =4.888

E, = 4.888 cos (15 X 10% — 4x — 6.8192) a,

461
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SUMMARY

From E,, H, is easily obtained as

1.

1 a, XE
H=—&k XE, =5~
How N2

4a. + 68194,
_ T T 081 g8 cos (wf — K -
7.906 (238.4) 2, c08 (@ n

H, = (—17.69a, + 10.37 a,) cos (15 X 10% — 4x — 6.8197) mA/m.

PRACTICE EXERCISE 10.11

If the plane wave of Practice Exercise 10.10 is incident on a dielectric medium
having 0 = 0, ¢ = 4g,, u = p, and occupying z = 0, calculate

(a) The angles of incidence, reflection, and transmission

(b) The reflection and transmission coefficients

(¢) The total E field in free space

(d) The total E field in the dielectric

(e) The Brewster angle.

Answer: (a) 26.56°, 26.56°, 12.92°, (b) —0.295, 0.647, (c) (10 a, + 5a,) cos
(wt + 2y — 47) + (—2.946a, + 1.473a,) cos (wt + 2y + 4z) V/m,
(d) (7.055a, + 1.618a,) cos (wr + 2y — 8.7182) V/m, (e) 63.43°.

The wave equation is of the form
3’6, 0%
— —u =0
at az

with the solution
& = Asin (wt — 82)

where u = wave velocity, A = wave amplitude, « = angular frequency (=27f), and
B = phase constant. Also, 8 = w/u = 2x/\ or u = fA = NT, where A = wavelength
and T = period.

. In a lossy, charge-free medium, the wave equation based on Maxwell’s equations is of

the form
VA, ~ v*A, =0

where A, is either E; or H; and ¥ = « + j$ is the propagation constant. If we assume
E, = E,(2) a,, we obtain EM waves of the form

E(z, 1) = Eje” *“ cos (wt — 32) a,

H(z,7) = Hye *cos (vt — Bz — 0)a,
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where « = attenuation constant, 3 = phase constant, 3 = |y|/f, = intrinsic imped-
ance of the medium. The reciprocal of « is the skin depth (6 = 1/a). The relationship
between 83, w, and \ as stated above remain valid for EM waves.

Wave propagation in other types of media can be derived from that for lossy media as
special cases. For free space, set 0 = 0, & = &,, u = p,; for lossless dielectric media,
set 0 =0, € = g.&,, and p = pou,; and for good conductors, set ¢ = %, g = g,
U = o, OF olwe = Q.

. A medium is classified as lossy dielectric, lossless dielectric or good conductor depend-

ing on its loss tangent given by

U
tan § = Il _ o _ &
lex WE e

where g, = &' — j&" is the complex permittivity of the medium. For lossless dielectrics
tan § << 1, for good conductors tan § >>> 1, and for lossy dielectrics tan @ is of the
order of unity.

. In a good conductor, the fields tend to concentrate within the initial distance 6 from the

conductor surface. This phenomenon is called skin effect. For a conductor of width w
and length £, the effective or ac resistance is

Rac = .
owd

where 6 is the skin depth.

. The Poynting vector, P, is the power-flow vector whose direction is the same as the di-

rection of wave propagation and magnitude the same as the amount of power flowing
through a unit area normal to its direction.

®»=EXH, P, = 1/2Re (E, X HY

. If a plane wave is incident normally from medium 1 to medium 2, the reflection coeffi-

cient I' and transmission coefficient 7 are given by

E - E
I“:i—nz M 7=i=l+F
E.

i 2 + 771’ Eio
The standing wave ratio, s, is defined as

1 + |T|
A e ———
I =T

. For oblique incidence from lossless medium 1 to lossless medium 2, we have the

Fresnel coefficients as

_ nacos b, — n, cos 0 29, cos b;

f 7

a N, cos B, + n, cos §;

7, cos 8, + n; cos 8,
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for parallel polarization and

M, cos §; — m; cos G, 27, cos 8,
- ro=
+ N, cos 0, + nq cos 6,

r, =
1, cos 6, + 75, cos 6,

for perpendicular polarization. As in optics,

0, = 0,’
sin 8, _ B _ ug
sin 0,- 62 25225

Total transmission or no reflection (I' = 0) occurs when the angle of incidence 0; is
equal to the Brewster angle.

10.1 Which of these is not a correct form of the wave E, = cos (wt — 8z)?

(a) cos (Bz — w?)
~(b) sin (Bz — wf — 7w/2)
2wt 27z
(c) cos (T - T)
(d) Re (/%)
(e) cos B(z — ut)

10.2 Identify which of these functions do not satisfy the wave equation:

(a) 5070

(b) sin w (10z + 5¢)
() (x + 21)°

(d) cos’(y + 51

(e) sinxcost

—  (f) cos (5y + 2x)

e

10.3 Which of the following statements is not true of waves in general?

~7» (a) It may be a function of time only.
(b) It may be sinusoidal or cosinusoidal.
(c) It must be a function of time and space.
(d) For practical reasons, it must be finite in extent.

104 The electric field component of a wave in free space is given by E = 10 cos
(107t + kz) a, V/m. It can be inferred that

(a) The wave propagates along a,.
_(b) The wavelength A = 188.5 m.

[ R
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Review QUESTIONS

—-.. (¢) The wave amplitude is 10 V/m.
(d) The wave number £k = 0.33 rad/m.
(e) The wave attenuates as it travels.

10.5 GiventhatH = 0.5 ¢ *"sin (10% — 2x) a, A/m, which of these statements are incor-
rect?

(a) @ = 0.1 Np/m

(b) B8 = —2rad/m

(©) w = 10°rad/s

(d) The wave travels along a,.

(e) The wave is polarized in the z-direction.
(f) The period of the wave is 1 ps.

10.6 What is the major factor for determining whether a medium is free space, lossless di-
electric, lossy dielectric, or good conductor?

(a) Attenuation constant

(b) Constitutive parameters (g, €, p)
(c) Loss tangent

(d) Reflection coefficient

10.7 In a certain medium, E = 10 cos (10%7 - 3y) a, V/m. What type of medium is it?

(a) Free space
(b) Perfect dielectric
. (c) Lossless dielectric

(d) Perfect conductor

10.8 Electromagnetic waves travel faster in conductors than in dielectrics.

(a) True
(b) False

10.9 In a good conductor, E and H are in time phase.

(a) True
- (b) False

10.10 The Poynting vector physically denotes the power density leaving or entering a given
volume in a time-varying field.

-~ (a) True
(b) False

Answers: 10.1b, 10.2d.f, 10.3a, 10.4b.c, 10.5b,f, 10.6¢, 10.7¢c, 10.8b, 10.9b, 10.10a.
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PROBLEMS I

10.1

10.2

10.3

10.4

*10.5

10.6

10.7

10.8

Electromagnetic Wave Propagation

An EM wave propagating in a certain medium is described by
E = 25sin 27 X 10% — 6x)a, V/m
(a) Determine the direction of wave propagation.

(b) Compute the period 7, the wavelength A, and the velocity u.
(c) Sketch the wave att = 0, T/8, T/4, T/2.

(a) Derive eqgs. (10.23) and (10.24) from eqgs. (10.18) and (10.20).
(b) Using eq. (10.29) in conjunction with Maxwell’s equations, show that

Jop
Y

(c) From part (b), derive eqs. (10.32) and (10.33).

At 50 MHz, a lossy dielectric material is characterized by e = 3.6g,, u = 2.1pu,, and
o = 0.08 S/m. IfE; = 6¢™ " a, V/m, compute: (a) v, (b) N, (¢) u, (d) 4, (e) H,.

Alossy material has p = Spu,, £ = 2¢,. If at 5 MHz, the phase constant is 10 rad/m, cal-
culate

(a) The loss tangent

(b) The conductivity of the material

(c) The complex permittivity

(d) The attenuation constant

(e) The intrinsic impedance

A nonmagnetic medium has an intrinsic impedance 240 /30° Q. Find its

(a) Loss tangent

(b) Dielectric constant

(c) Complex permittivity

(d) Attenuation constant at 1 MHz

The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by
18% every meter. If the wave operates at 10 MHz and the electric field leads the mag-
netic field by 24°, calculate: (a) the propagation constant, (b) the wavelength, (¢) the skin
depth, (d) the conductivity of the medium.

Sea water plays a vital role in the study of submarine communications. Assuming that
for sea water, 6 = 4 S/m, &, = 80, u, = 1, and f = 100 MHz, calculate: (a) the phase
velocity, (b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

In a certain medium with y = p,, & = 4e,,

H = 12¢""Ysin (x X 10% — By) a, A/m

find: (a) the wave period T, (b) the wavelength A, (¢) the electric field E, (d) the phase
difference between E and H.




10.9

10.10

10.11

10.12

10.13

*10.14

10.15
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In a medium,
E = 16¢ *%*sin (2 X 10% — 2x)a, V/m

find: (a) the propagation constant, (b) the wavelength, (c) the speed of the wave, (d) the
skin depth.

A uniform wave in air has
E = 10 cos 27 X 10°% ~ fz) a,

(a) Calculate 8 and A,
(b) Sketch the wave at z = 0, M4,
(¢) Find H.

The magnetic field component of an EM wave propagating through a ndnmagnetic
medium (g = p,) is

H = 25sin (2 X 10° + 6x) a, mA/m
Determine:

(a) The direction of wave propagation.
(b) The permittivity of the medium.
(¢) The electric field intensity.

IfH = 10 sin (wt — 4z)a, mA/m in a material for whiche = 0, u = u,, € = 4¢,, cal-
culate w, A, and J ;.

A manufacturer produces a ferrite material with yg = 750y, € = 5¢,, and o =
107° S/m at 10 MHz.

(2) Would you classify the material as lossless, lossy, or conducting?

(b) Calculate 8 and A.

(c) Determine the phase difference between two points separated by 2 m.
(d) Find the intrinsic impedance.

By assuming the time-dependent ficlds E = Eoe/® ™" and H = Hye/™ ™ " where
k = ka, + k,a, + ka_ is the wave number vector and r = xa, + ya, + za, is the
radius vector, show that V. X E = —adB/d¢ can be expressed as k X E = pwH and
deduce a; X ag = ay.

Assume the same fields as in Problem 10.14 and show that Maxwell’s equations in a
source-free region can be written as

k-E=0
k-H=0
k X E = wupH

k X H= —weE
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10.16

10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

From these equations deduce

a; X agp = ag and a; X ag = —ag

The magnetic field component of a plane wave in a lossless dielectric is
H = 30sin 27 X 10% — 5x) a, mA/m

(@) If u, = 1, find g,.

(b) Calculate the wavelength and wave velocity.

(¢) Determine the wave impedance.

(d) Determine the polarization of the wave.

(e) Find the corresponding electric field component.
(f) Find the displacement current density.

In a nonmagnetic medium,
E = 50 cos (10°r — 8x) a, + 40 sin (101 — 8x) a, V/m

find the dielectric constant &, and the corresponding H.

In a certain medium
E = 10 cos (27 X 10’t — Bx)(a, + a,) V/m
If p = 50p,, € = 2g4,and ¢ = 0, find 3 and H.

Which of the following media may be treated as conducting at 8 MHz?

(a) Wet marshy soil (¢ = 15&., p = po, 0 = 10~ 2 S/m)
(b) Intrinsic germanium (¢ = 16¢&,, g = po, ¢ = 0.025 S/m)
(c) Seawater (¢ = 8ley, p = po, 0 = 25 S/m)

Calculate the skin depth and the velocity of propagation for a uniform plane wave at fre-
quency 6 MHz traveling in polyvinylchloride (x, = 1,&, = 4,tan 9, = 7 X 1072).

A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/m at 10’ Hz and
its magnitude is reduced by 60% for every 2 m traveled. Find the skin depth and speed of
the wave.

(a) Determine the dc resistance of a round copper wire (¢ = 5.8 X 107 S/m,
u, = 1, &, = 1) of radius 1.2 mm and length 600 m.

(b) Find the ac resistance at 100 MHz.
(c) Calculate the approximate frequency where dc and ac resistances are equal.

A 40-m-long aluminum (¢ = 3.5 X 10" S/m, g, = 1, &, = 1) pipe with inner and
outer radii 9 mm and 12 mm carries a total current of 6 sin 10° 77 A. Find the skin depth
and the effective resistance of the pipe.

Show that in a good conductor, the skin depth § is always much shorter than the wave-
length.




10.25

10.26

10.27

*10.28

10.29

10.30

10.31

10.32
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Brass waveguides are often silver plated to reduce losses. If at least the thickness of
silver (4 = po, € = £,, 0 = 6.1 X 107 S/m) must be 58, find the minimum thickness
required for a waveguide operating at 12 GHz.

A uniform plane wave in a lossy nonmagnetic media has -
E, = (5a, + 12a)e ™, v = 0.2 + j3.4/m

(a) Compute the magnitude of the wave at z = 4 m.
(b) Find the loss in dB suffered by the wave in the interval 0 < z < 3 m.
(c) Calculate the Poynting vectoratz = 4, ¢t = 7/8. Take w = 108 rad/s.

In a nonmagnetic material,
H = 30 cos 27 X 10% — 6x) a, mA/m

find: (a) the intrinsic impedance, (b) the Poynting vector, (c) the time-average power
crossing the surface x = 1,0 <y < 2,0 <z <3 m.

Show that eqs. (10.67) and (10.68) are equivalent.

In a transmission line filled with a lossless dielectric (¢ = 4.5g,, . = po),
40 |
E= 7 sin (wt — 2z)a, V/m

find: (a) w and H, (b) the Poynting vector, (c) the total time-average power crossing the
surfacez = 1m,2mm < p < 3 mm, 0 < ¢ < 27.

(a) For a normal incidence upon the dielectric—dielectric interface for which
Ui = Wy = Mo, We define R and T as the reflection and transmission coefficients for
average powers, i.e., P, e = RP; e and P, 5. = TP, 5. Prove that

2

n,—n 4n,n
R:(—l 2) and T= - b2 5
ny+on, (ny + ny)

where n, and n, are the reflective indices of the media.

(b) Determine the ratio n,/n, so that the reflected and the transmitted waves have the
same average power.

The plane wave E = 30 cos(wt — z)a, V/m in air normally hits a lossless medium
(g = po- &€ = 4g,)at z = 0. (a) Find T, 7, and s. (b) Calculate the reflected electric and
magnetic fields.

A uniform plane wave in air with
H = 4 sin (wt — 5x) a, A/m
is normally incident on a plastic region with the parameters p = p,, & = 4g,,ando = 0.

(a) Obtain the total electric field in air. (b) Calculate the time-average power density in the
plastic region. (c) Find the standing wave ratio.
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10.33

10.34

10.35

10.36

10.37

*10.38

10.39

A plane wave in free space with E = 3.6 cos (w¢t — 3x) a, V/m is incident normaily on
an interface at x = 0. If a lossless medium with 0 = 0, &, = 12.5 exits for x = 0 and
the reflected wave has H, = —1.2 cos (wf + 3x) a, mA/m, find p,.

Region 1 is a lossless medium for which y = 0, u = u,, € = 4¢,, whereas region 2 is
free space, y < 0. If a plane wave E = 5 cos (10% + 8y) a, V/m exists in region 1,
find: (a) the total electric field component of the wave in region 2, (b) the time-average
Poynting vector in region 1, (¢) the time-average Poynting vector in region 2.

A plane wave in free space (z = 0) is incident normally on a large block of material with
g, = 12, u, = 3, 6 = 0 which occupies z = 0. If the incident electric field is

E = 30 cos (wt — z) a, V/m

find: (a) w, (b) the standing wave ratio, (c) the reflected magnetic field, (d) the average
power density of the transmitted wave.

A 30-MHz uniform plane wave with
H = 10 sin (wt + Bx) a, mA/m

exists in region x = 0 having o = 0, & = 9g,, u = 4u,. Atx = 0, the wave encounters
free space. Determine (a) the polarization of the wave, (b) the phase constant 3, (c) the
displacement current density in region x = 0, (d) the reflected and transmitted magnetic
fields, and (e) the average power density in each region.

A uniform plane wave in air is normally incident on an infinite lossless dielectric mater-
ial having &€ = 3e, and p = p,. If the incident wave is E; = 10 cos (wf — 2) a, V/m,
find:

(a) N and w of the wave in air and the transmitted wave in the dielectric medium

(b) The incident H; field

(c) 'and 7

(d) The total electric field and the time-average power in both regions
A signal in air (z = 0) with the electric field component
E = 10sin (wz + 3z)a, V/m
hits normally the ocean surface at z = 0 as in Figure 10.19. Assuming that the ocean

surface is smooth and that ¢ = 80g,, p = p,, 6 = 4 mhos/m in ocean, determine

(a) w

(b) The wavelength of the signal in air

(c¢) The loss tangent and intrinsic impedance of the ocean
(d) The reflected and transmitted E field

Sketch the standing wave in eq. (10.87) at ¢t = 0, 7/8, T/4, 37/8, T/2, and so on, where
T =27lw.




PROBLEMS 471

Figure 10.19 For Problem 10.38.

H(f—» E
a, I

- X

[N}

10.40

10.41

10.42

*10.43

free space free space

ocedan

£=80e,, u= po, 0 =4

A uniform plane wave is incident at an angle 6; = 45° on a pair of dielectric slabs joined
together as shown in Figure 10.20. Determine the angles of transmission 8,; and 0, in the
slabs.

Show that the field
E, = 20 sin (kx) cos (k) a,

where k2 + k\2 = w’p.&,, can be represented as the superposition of four propagating
plane waves. Find the corresponding H,.

Show that for nonmagnetic dielectric media, the reflection and transmission coefficients
for oblique incidence become
r tan (6, — 6)) 2 cos B, sin 6,
= T =
" tan (0, + 0y '™ sin (6, + 6)) cos (0, — 6))
sin (8, — 8) 2 cos 8, sin 6,
FJ_ = T T Ao e
sin (6, + 6) sin (6, + 8,)

A parallel-polarized wave in air with

E = (8a, — 6a,) sin (wt — 4y — 32) V/m

impinges a dielectric half-space as shown in Figure 10.21. Find: (a) the incidence angle
0;, (b) the time average in air (@ = p,, & = &,), (¢) the reflected and transmitted E
fields.

Figure 10.20 For Problem 10.40.
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z Figure 10.21 For Problem 10.43.

Air
(& = &0, b = o)

10.44 1In a dielectric medium (& = 9¢,, u = 1), a plane wave with
H = 02cos (10° ~ kx — k\V/82) a, A/m
is incident on an air boundary at 7 = 0, find
(a) 0, and 8,
(b) k
(¢) The wavelength in the dielectric and air
(d) The incident E
(e) The transmitted and reflected E
(f) The Brewster angle

*10.45 A plane wave in air with
E = (8a, + 6a, + 5a,) sin (wr + 3x — 4y) V/m

is incident on a copper slab in y = 0. Find w and the reflected wave. Assume copper is a
perfect conductor. (Hint: Write down the field components in both media and match the
boundary conditions.)

10.46 A polarized wave is incident from air to polystyrene with u = u,, & = 2.6& at Brewster
angle. Determine the transmission angle.
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CHAPTER 10
P. E. 10.1 (a)

e|;\,»

— —_ 3 .4 ! ns’
2.‘ 10“ o R

~
i

A=ul=3x10"x3142x10” = 9.425 m

k=B=2n/}= 0.677rad/m

(b) t,=T/8=3.927n

(c)
Ht=1)= 0./ cos(2x10*

as sketched below.

n
8x10°

Hy
A

2x/3)a, = 01cos(2x/3~n/4)a,

ANTANE ANIAN
VARV VAV

P.E.10.2 Let x,=4/+(c/0¢c)’, then

16
€= \/L;"-p,s,(xo— I = %"7,/% By

ac 1/3x3x10° 1

, -]= - - —
or X, m\/’g 108.\/5 ‘\/—g

> x =9/8

, 81 ,
x)=—=1+(c/og)} ——»  _05I5¢
64 0e

tan20 = 05154 —> 6,=17363"
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= 1.374 rad/m

(b) —=0.5154
We

NITWA _120nv2/8
(c) Inl= \/'— 978

=177.72

n=17772£1363°Q

177.5

o 10° ;
= —= =7278x10
. (d) u ER 8x10" m/s
(e) a,=axa, —> axay,=a. —-= ay=a,
0.5 —3l3 s 8 0o -2/3 8
H-= e sin(10°t - Pz~ 13.63°)a, = 2.817¢*" sin(10°t - Bz - 1363°)a, mA/m

P.E.10.3 (a) Along -z direction

-l - o i - T

3x10%x2
or\e, =fc/o = —/———— 210" =6 ———» €,=36
120
(€) 0, =0.0n=u/e =i, /e, \Il¢, = ——-= 201

d,=d,xa, > ~a.=axdy, » a,=a,
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0
———sin(o !+ Pz)a, = 7958sin(/0*t + 2z)a, mA/m

20
P.E. 10.4 (a)
o 107
— =z = ().()9
0€
10° nxdx —

367

9

- ﬁiui(ijz - i-Lzoog) = 0.9425

_ o fwe 1(_2.)2 10°
=coJ2{1+2 #1l= 103\/2[2+05(009)] 20.965

E = 30e™°"" cos(10°rt - 20.96y +  / 4)a.
Att=2ns, y=1m,

E = 30e™°"% cos(2n - 20.96 + n / 4)a, = 2787a, V/m

b 10-£ d

or

L4

Y= 785 " 18x20905 - 33%2mm

(c) 30(0.6) = 30 ¢

]
09425 Mo - 242mm

i
y=—In(1/06)=

(d)

Ju /e 60n
- = 18811

Inlz — = =
[/+ 4(().()9)-‘] 1002

to
]

]
S~

2. =tan"'0.09 p 0=
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a, =a,xa, =axa.=a,

_ 30
T 188.11

H e’ cos(10°nt - 2096y + n /4~ 2.571°)a,
Aty =2m, t=5ns,

H = (0.1595)(0.1518) cos(-4.5165rad)a, = -47la, mA/m

P.E. 10.5
w L w o« J 0 6
1= [ [Judydz = J,0) fay etz = 202
70 0 I+J
PRI
T2

P.E.10.6 (a)

R 13x107°
Lo _ 2 _ 24 [nfic = x2 Vnx10 x4xx107x35x10° = 24.16

(b)

R, 13x107° > — -
T Vrx2x10° x4nx107 x3.5x10° = 1080.54
"

Ic

P.E. 10.7 «

I
P = SNH,
ave 2n oax

(a) Let f(x,z)=x+z-1=0

a = —t—= = , d5=dSa
VS W2 "
1 a+a
— o — - 2 x
P= [9.dS =95a, YA =
/

(1202)0.2)°(0.1)" = 53.31 mW

N2
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(d) dS = dydza,. P =[9dS = SNH,S

N |~

P =

P.E.10.8 n,:qnzlgo,t,n_,z\/:!::%g

2 b T
e= =gy e
N+,

_n2+n,—

=-1/3

E, =TE, =-—
ro [ 3

10 .
E, =- ?e’”"a,, v/m

where B, =0 /c=100n/3.

20
E =1E =

0 =g

20
E, = —E—e""”a,r V/m

where B, = 0.f¢, /c= 2B, = 200% /3.

P.E. 109

2
«,=0, B, = %,/p,s, - T“’: S——0=5c¢/2=7.5x10°

o, 0.1
= —~ = 1.27

75x10°%x4x

0E,

367

Q= %\/g[\/n 14417 - 1) = 6021

B.= %\/g[\/u 4477 + 1] - W 7,946
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N h 9 44 N n 8,
: JVI t 1447[~ ! !

tan 20 0 = 121 ——> On:: 37.57°

N, = 95445£37.57°

(a)
o NamNy  95445£37.57°- 754

= - 0.8186/ 17108
N, +1, 95445737577+ 754 8 08

1=1+1=02295£33.56°

I\ 1+ 08186
ST T 98186 - 1202

~
'

(b) E, =50sin(ot- 5x)a, = Im(E,e’), where E_ = 50e-/5xay‘
E, = IE, = 08186¢’""'" (50) = 40.93¢/"'*".

Ers = 40'93ej5x+jl7108°a

y

E, = Im(E,e™)= 40.93sin(ot + 5x+ 1711°)a, V/m

ay = axay=-axa,=-a

40.93 ’
H = sin(o?+ 5x+ 171.1°)a, = -0.0543sin(ot + 5x+ 1711°)a, A/m

rT 7 754

(c)
o =1E, =0229¢""°(50) = 11.475¢'% %

E, = 11475¢ /#:<+/3% e *“a,

E =Im(Ee") = 11475¢" " sin(w - 7.826x + 33.56°)a, V/m

ay =d,xa, =d.xd, =da.

|
l
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11495

- -6020x oo . 567~ 37.57°
T 95445 sin(@?-7826x+ 33.56" - 37.57°)a.

= 0.1202¢7°%" sin(wt - 7.826x - 4.01°)a. A/m

(d)

? Eu)- Em: ( )
= — + - =
lave 2n ; avr Zn , ax 2(2407[ )

[50°a, - 40.93°a,) = 05469, Wim?

E S (11475)°

g: = o -2a,x 0 7
me = ¢ ST 5095 145)

P. E. 10.10 (a)

k=-2a,+4a,—- k=v2"+ 4 =20

0 = ke=3x10°V20 = 1.342x10° rad /s,

A=2nk=28.Im

akxE‘_ (—2ay+ 402)
n,  ~20(120r)

(b)H = x(10a, + 5a,)cos(w! - k.r)

= - 29.66 cos(1.342x10°t + 2y - 4z)a, mA/m

(c) o - |E0|2a ) 125 (—2ay+4a:)
" 2m, ¢ 2120n) Y20

= -74.15a,+ 1489, Wim®

P.E. 10.11 (a)

c0s37.57°e % q = 0.5469¢"""a, Wim’

A e ST
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v 2
tanf, = —= i 0,=2656=9,

B, ey

28>

/
sinf, = sinf, = 55in26.56" —-0,=17292°

=

we may use the result of Prob. 10.42, i.e.

tan(6,-0,) tan(-7/3.64")

" tan@®,+0,) tan(39.48°)
2¢0s26.56°sin12.92°

"7 Sin39.48° cos(- 13.64°)

-0.2946

S
AN

647

|

() k =-P,sinb,a,-P,cosb,a,. Once k, is known, E, is chosen such that

k,.E,.=0or V.E =0. Let
E, =21E,(-cosb,a, +sinb,a )cos(wr+p,sind, y+ B, cosb,z)

Only the positive sign will satisfy the boundary conditions. It is evident that

E, = E,(cosb,a, +sind a )cos(ot+ 2y - 4z)

Since 6, =86,

E,cos8, =1, E, cosb, =10, =-2946
E, sinb, =7 ,E sin®, =57, =-1473
B,sinB, = 2,p,cosb, = 4

le.
E, =-(2946a, - 1473a.)cos(wt+ 2y + 42)

ol

®d)n,=n,,n,=1, /2, Eis parallel to the plane of incidence. Since H,=p,=4,,

E = E +E =(0a, +5a)cos(ot+2y-4z)+ (-2946a, + 1473a_)cos(wt + 2y + 4z)

V/m
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(d) k, = -P,sinb,a, +p,cosb,a.. Since k, o E =0, let

E = E,(cosb,a,+sinb,a.)cos(at+p,ysinb, - f,zcosb,)

Br=0HE, =ﬁ,\/£:=2\/—2_0‘

sine,:ésm(},:%, cosf, = \/2—5;
B,cosd, = 24/20 g8
' 20
E,cosh, =1,E, cosb, = 06474125 % = 7.055

E

ot 4 o

[1
sinf, = 1, E, sinf, = 0.647425 o = 16185

Hence

E,= E, = (7.055a,+ 16185a,)cos(ot + 2y - 8718z) V/m

(d) tanb,, = \/'2_7 =2—0,,=6343
, Oan = 0545

Prob. 10.1 (a) Wave propagates along +a,.

(b)
r- 2.2
"o 2axi0f TS
LR LY
=3 "% kL m
o 2nxl10° p
u=F= 5 = 1.047x10°m/s

(c) At t=0, E_ = 25sin(-6x)=-25sin6x

o7 o1
—=-6x)= 2.>sm(-4——6x)

At 1=T/8. E. = 25sin(—
/ / . sin( T3

I

it
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2n T
At t=T/4, E. - 25sin(?n7— 6x)= 25sin(-6x+ 90°) = 25cos6x

mT
At t=T/2, E. = 25sin(7n3— 6x)= 25sin(-6x+ 1) = 25sin6x

These are sketched below.

t=0 E: T
25 /\ N
25 M A

t=T/8
E. L
A A
» X
225 ,\/ )L
t=T/4
E.
25 .
X
>
RV
t=T/2

—_———
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Prob. 10.2 If

Y’ = jop(s + joe)= -0 ue + jops andy = a + jp, then

IY:I= \/(a"—B")+4a"B:=\/(a"+B")“’=a3+BJ
ie.
'

a’+B = opf(c +0%?) (1)

Re(y")=a"-p" = -0 ke

pr-a’ =0 @

Subtracting and adding (1) and (2) lead respectively to

o] z+(:—eJ:-1}
oo i ()

(b) Fromeq. (10.25), E (z)= E e "a,.

VxE = _j(DHHS — Hc = LVxEc = ‘L("YEae_’:ay)
But H(z)= He™ a,, hence H = —*= _I ’
| N op
o
Y

(¢) From (b),

) jou _\/jwu BN

n—\/jc)p(c+je)s)— o+jc)e_\/1 G
_.I -------

[l
Tmos o e, e
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NE o
[nl= _HTE = ,tanZO,‘:(%] - =

Prob. 10.3 (a)

o 8x10™’
—_— = o= 8

50x10°x3.6x }gﬂ*

2.1x3.6

6.129

—_—
It

REer

y=a+jB=541+j6.129 /m

tan20, = E)‘-’s—= 8—0, = 4144

n= 1014141440

5§ 6 - 6
() H=ax—=ax—e"
N n N

Lo lne “(_g_)-’ ; _2nx50x106J
Ty 2 o€ 3x10°

a.=-—e¢"

b A= 2% 025
=B T 6120 ==2M
© _Q_an50x106_5125 I
O MERT T g2 T 2eLXl mis
N
\/L‘j 1201 37:—
) Inl= = o5 - lo14
1+ —
0e

CI\=

2

[V65 - 1= 541

-59.16¢7""* ¢ a mA/m
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o
Prob. 10.4 (a) Let u= o = loss tangent

SRHEN

10- 2 P2 T )« OS]

2 3x10°
which leads to

u=— =1823
we

-9

10
(b) 6 =weu= 2nx5x10°x1823x

60 " 1013 S/m

©) o mem g S g 1071023
€) EmEmjE=E o %361 7 2nx5x10°

= 1768x107"" - j3.224x107° F/m

d -
a Wit +1

a = 9.995 Np/m

K 5
[ mf

€
e) = -
© nl v ? Y1+1823

o Witd-1_ ,1822
- V1824

= 13.96

tan20, = u= 1823 —— 0, =4498°

n=13.96/44.98°Q

Prob. 10.5 (a) — = tan20, = tan60° = 1732

[20n

(b) inj= 240 = Ve 120 — g = LI 1.234
VIi+3 2¢ T8
| J2€,
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-9

c ]
= -j—)=1234
(c) e, =¢(/ jmg) 23 x36n

(1-j1732)= (1091 - j189)x10™"" F/m

(d)

3x10°

g 2nx10° |1 n’
az_‘*c’_\/&[ 1+(L) _IJz X JE%—[J1+3—1]=0.0164 Np/m

Prob. 10.6 (a) |E|= Ee™™

Ee ) =(-0I8)E,—> e =082

!
a = lnm- 0.1984

0, = 24— tan2, = —= 1.]1]
0e

¢ )’ GRS L
I+ —| -1 — T :
o \/\l (ms) [V2233-1 .~
= = | Vaziys " 227 b= 04458
\/ I+ (—) + |

Y=o+ jB= 01984+ j0.4458 /m

) A== 2x/04458= 1409 m

B

(c) 6=1/a =504 m

(d) Since

G 2
o =0 s 1+(~——) -1 =9—‘/&\/0.494, p,=1
2 0E cy 2 r

£ ac 0.1984x3x10%

r

_ : = 1348 —— ¢ = 3633
V2 T 00494 2ax10 0494 > =363
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. o}
Since —= 1111
0E

-9

36n

o =we.e,xlll]=21x10"x x3633x1.111=224x10" S/m

Prob. 10.7

L 4 _ 80,000
we 2nxl10°x81x107°/36n 9

>>

2nx10° ,
oa=p= m;c =\f”‘; x4nx10" x4 =04n

2nx10’ 5
@ u=o0/p-= 0 = 5x10° m/s
b) A=2n/ —ZL—S
( =T B-0.41t—=m

1
(c) 5=1/a=m—0.79 m

(d) n=[nl£6,,0, =45

f Inx107 x27x10"
Nz ——== il = \/ X Xenx = 1405
2 £ 0 4

n= 1405445

Prob. 10.8 (a)

2n
T=1/f=2nlo = nx108=20 ns
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)
But a=—
c

ac 0.1x3x10°

x-1= = o = 0.06752—— x = 1.0046
pe, wxi0 V2
® /__-

:
) (x+ 1) o (2.0046) " ol 2088
b={%=7) ““\oooss) %174
N=2m/pe -3
=2n/b=508g "M

Jile 377
£ 188.1

N N

2
x= 1+(i) = 10046
we

= 0096 = tan20, —— 0, = 274°
[OR

n= 18814274

E,=nH, =12x188.1= 2256.84

apxa, = a,—> a,xa, = a,—- a, = a,

E=2256¢"" sin(xx10°t - 2088y + 274°)a, kV/m

(e) The phase difference is 2.74°.

Prob.10.9 (a) y=a +jB =005+ j2 /m

()

A4

N

M) r=2a/Pp=n-= m

|

2x10

(cYu=0/p= = 10" m/s

5

-
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/
(d) 6=1/a=55=20m

I

6

2nxl
Prob. 10.10 (a) =0 /c= +— = 0.0209+4 rad/m,
3x10 —_—

A=2n/p =300 m

(b) When =0, E), = /Ocoswt

2n A .
z= A/, E}.=10cos(u)r—T;)=105mm(
z=X/2, E =10cos(at-n)=-10cosot

Thus E is sketched below.

z=0 A
S ANEVAN
|
\/ t
Z=X/4 y ‘
/N,
W/ ‘
zz= A/2 ‘
y A

SV

(c)
H

= 307 Cos(2nx10%t - 212/ 300)a, = 26.53 cos(2xx10°1 - 0.02094)a, A/m

Prob. 10.11 (a) Along -x direction.

(by B=6, o=2xI10".
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B:(J_)\/p—: %V“rer

Jo = pes _6x3x10”_9 R _ 8]
T PCIO = o0t £ =

~9

£=¢¢ = x81=7.162x10""" F/m

b4
120
(C)ﬂ=\/u/€ =\/p,,/80\/p,/gr = 9“

E, = Hn=25x107x37719 = 1047
axay = a—> apxa, = -a, —= a4, =a,

E = 1047sin(2x10%t + 6x)a. V/m

Prob.10.12 f=4 —> A=2n/p=157Im

Also, =0 /u= m\/;_= %,/p,e,

pe 4x3x10°

= = = 6x10° rad/
® \/Prﬁr 77 x10° rad/s
LRI
Jy,=VxH=| ox dy 0z|= . Y
HGE 0 0 z

J,=~-40cos(ot- 4z)x10"ay = -40cos(wt - 4z)ay mA/m>

c 10°° »
Prob. 10.13 (a) —= =36x107" << |

107
2rx10" x5
nx X x367!

Thus. the material is lossless at this frequency.
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(c ) Phase difference = /= 25.66 rad

750
() n=le= 1201:‘/:’ - 120n1/—5— - 46170

Prob. 10.14 If A is a uniform vector and @ (r) is a scalar,

V(@A) =V OxA + @ (VxA) = V OxA

since VX4 =0.

a a a + +K,2-w!f
VxE=(‘5;a,+5;ay+gz—a:)xE !k ehhkemol) o ik g +ka,+ka)e’

= jkxE, e’ ) = jixE

0B
Also, -—=
ct

From this, a,xa, = a,

Prob. 10.15

0 0 0 ko x+k y+k z-of) .
VeE-= (E"* + an + E;a"). Eé’ YR 2 jlka, + ka, + koa,)e

= jkeEe’t '=jkoE=0 —o5 keE=0
Similarly,
VeH= jke H=0 —-> keH=0

It has been shown in Prob. 10.14 that

B .
VyEz-— —————% kE=ould
cl

!

'xE,

).E
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Similarly,
¢D

VxH = . —» kxH =-¢0E
¢

From kxEE= ouH, a.xa, = a, and

From kxH = -ewE, axa,=-a,
Prob. 10.16 (a)

_Eg_5x3x108_£
p= \[8_’ - \/:— o 2nx10° T 2n

£, = 3.6993

r

(b) A=2n/B=21/5=12566 m

e

c 3x10°

e B3
2n

= 1.257x10° m/s

d) apxa,=a,—- ayxa.=a,—-a;=a,

(€)  E=30x107(157.9])sin(ot - px)a, = 4737sin(2nx10°t - Sx)a, V/m

oD
® J, = 5 VxH = 0.15cos(2nx10%t - Sx)a, A/m

Prob. 10.17 B=oyhe =—y&, i, u,=!

8x3x10° >
,[gr:EE: L]gy—:z.[ E,:5.76
10} [ ——

let E = E,+E>
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E, = 50cos(10°t-8x)a,,  E,=40sin(/0°t - 8x)a.
9 50x24 1
H, = H, cos(10°t-8x)a,,, H, = T0n - 7

apXay, = dy,—=>2axdy, =d, —=da,, =da.

/ .
H, = —cos(/0°t - 8x)a.,
n

H,= H,sin(10°t- 8x)a H,= 10x2.4 = 08
- Ha 27 ]120n =

QXA = Qy— > AXAy, =4, —> Ay, = -4,

0.8
H,=- Tsin(lo"t - 8x)a,,

H = H/ +H; =-0.2546sin(10°t - 8x)a, + 0.3183cos(10°t - 8x)a,

21x107
Prob.10.18 B =o0Jue = 9’0—,/“,8, = 22X (10)= 20943 rad/m

3x10°
1
H= -~ [VxEar
H
A .
VxE=|{0x 0dy 0z |=-—"a,+ a.=-10psin(e? - Bx)a, - a,)
0 E/(x) E(x) o = 0x
o 108 os(o ! - pr)(a ) 10x2n /3 cos(o - Br)(
= - ——cos(of-Px)a, -a.)= - ; os(w 1 - -a,
op vy~ 9 20x10" x50x4nx107 OOt PN, a.)

H = 5305cos(2nx10"t- 20943x)(-a,+a.) mA/m

o
Prob. 10.19 For a good conductor, —>> /[,  say i> 100
0 0E
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107
(a) 2. N 15 ——->  lossy
]
2nx8x10° x15x 360
No, not conducting.
o 0.025
(b) — = 107 " 3515 @ ——o lossy
2nx8x10° -
36m
No, not conducting.
c 25 .
(c) —= 5 =6944 ——-  conducting
8x10°
2nx8x10 36m
Yes, conducting.
Prob. 10.20

3x10°

2 6
2 2nx6x10
a:m\/‘—‘i{ 1+(i - } "f\/“’ ’[J1004 -] = 22 \/2x2447x1o-3

o =8791x107°

d=1/aa=11375 m

B=m\/ﬂ;—[ 1+(m°s)7 J T \/ [V10049 + 1] = 0.2515

21x6x10° s
u=0/p= 02525 - 15x10° m/s
caz I,
Prob. 10.21 04E,= Ee™* —as —=z¢™
0.4
/
Or a—Elna——04581 —=  d=1/a=2183 m

h=2n/B=2nll6

. 2n .
u= fr=10 \E = 3.927x10 mis
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Prob. 10.22 (a)

= 228712

0 - L 600
“ 68 ona’ 58x10"xnx(12)’x107°

(b) R, = S At 100 MHz, §=6.6x/0" mm for copper (see Table 10.2).
R, = 600 = 207.88%2
“ 58x10" x2nx(1.2)x66x107° x107° T =——=
R, a 66.1x107°
(c) Yy

= :1 —— :/:———-——
R, % - d=al2 ‘/7

(o

\/——w 66.1x2x107° _66.1x2

= —_— = "7
. = 5> f=121.7 kHz

Prob. 10.23

o=101=2nf —o f=05x10°

! i
d= = = = == 0.1203 mm
JuBr  Jnx05x10°x3.5x10 xdnx10” ——

P
“” g8w

<
since & is very small, w= 2np

[ 40
R = = = ().

“ 62np,,,0 3.5x10"x0.1203x2nx12x107° 01262
Prob. 10.24 a=pf=1/%

A=2n/B=210=6283 —-> §=0.159]
showing that & isshorter than A .
Prob. 10.25

. 5 5 P

=30 = = 294x10" m

Jao  Naxi2x10’ x41x10” x6.1x10°
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Prob. 10.26 (a)

E=Re[Ee™]=(3a,+12a,)e” * cos(wt - 34z) .

At z=dm. (=T/8 or=FL_7
zZ= . = . = —_— = —
m S S R

E=(5a.+12a,)e”" cos(n / 4~ 13.6)

|E|= 13¢™""|cos(n /4~ 13.6)|= 5.6
(b) loss =adz=0.2(3)=06 Np. Since 1 Np=8.686dB.

loss = 0.6 x 8.686 = 5.212 dB

) Let x= 1+(0§’—8j:

a x—l)"‘? 1

B_( —) =02/34=

x-1

;‘:—1= 1/289 ——o x = 100694

a=0Jpe/2vx-1= %,/a,/Zs/x— /

\/g_ ac__ _02x3x10° . il
2 ovx-1 10°0006%4  * &=

Ho

e ,,J—, 200
W T Vils2x100694  C

tan20, = == 1=0118 —= 0, =3365

N = 32573365
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43365 -yz

a. . (Sa,+12a)
H=ax—="x(3a,+12a)e" = —————¢ e

nooM In|

H=(-3692a,+1538a,)e”" ¥ cos(wt - 34z~ 3.365") mA

50 12 0 _
x107e™"* cos(wt - 34z)cos(of - 3.4z 3.365")

P= Exlt :'—369.2 1538 0

P=52¢""cos(wt~ 34z)cos(wt - 3.4z~ 3.365)a.
At z=4, t="T/4,

P=352e""cos(n/4-13.6)cos(n/4-136-0.0587)a. = 0.9702a.W / m’

Prob. 10.27 (a) This is a lossl -~s medium,

B=m\/ﬁ, n=\/i:

_op, 2nx10°x4xx10”7

= 131612

(b) E,=nH, =1316x30x10" = 3.948

apxay =a,—-a,xa,=a,—-a.=-a.
L 4

P= ExH = nH, cos’(2nx10°t - 6x)a, = 0.1184cos’(2nx10%( - 6x)a, W/ m?

I,
c) &2, -= EnH,,' = 0.0592a, W/m?

Pz 2, 0dS=2, 0S=00592x3x2= 03535 W
Prob.10.28 Let E =E + jE  and H =H + jH
E=Re(Ee™)= E cosot- E sinot

Similarly.

= H cosot- H sinot
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. , / '
= ExH = E xH cos"ot+ ExH sin"ot - —(E,xH, + ExH )sin 20t

r I

17 17 I /
P = F(_’[.‘Td ﬂcos odi(E,xH )+ ?;)I'sm odi(ExH)- ﬁ!sinmdt(E,xH, + FxH,
1 1 |
E(E xH + ExH) = —Re[(E + JE)x(H - jH)]
/
P, = 3 Re(E xH.')
as required.
Prob. 10.29 (a)
[3 1 2x3x10° ;
u=0/ —_ = 2.828x10" rad/s
g cVis T Ja5 TE==—=
120
N= = 17770
45
E a. ) 5 .
H=ax—= ?'x—sm(a)t -2z)a, = si(w ¢ - 2z)a, A/m
(b) P =ExH=—sin’(ot- 2z)a, W/m’
4.5
(c)y 2. —?—a:, dS = pd¢dpa,
Imm dp 2x .
Poo= | %0 dS =46 ?jd(p = 4.5In(3/2)(21) = 11.46 W
2Zmm 0 .
_E; ES ES
Prob.10.30 (a) 7. = -, P, =, P, ==
", o2, o,
P E . (n.-m
R= LS. :r_:ln‘ n/[
[)i.\m' F : n.’ + n/
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ﬁ
P,, Ho

8/
Since n, = c\/p £, = c‘/p W€ RENCN TR

2
n+n
Rz( / 2)
n+n,

(b) If P,

rdve

-P,.—>RP, =TP, ——> R=T

ie. (m-nm) =4nn, —-> n’-6nn,+n’ =0

B_3+J8=5828 or 01716

n,

Prob. 10.31 (a) n,=1,, nO=J::=nD/2

L}
w

i
(b) E, =TlE,=~7x(30)=-10

E, -10cos(et + z)a, V/m

Let H = H cos(at+z)a,

a,Xd, = d, —= ~d,Xd, = ~d.—= d,; = d,

II

/2- 2
r nz nl__no n()=_1/3, = n} = ‘10
ntn, 3, /2 n.+n, 3
_1+|l’|~1+1/3_2
S I-\r)1-1/3° =

o
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H = 130m cos(wt+z)a, = 26.53cos(ot + z)a, mA/m

Prob.10.32(a) n,=n,
E = E sin(of- 5x)a,
E,=Hn, =120nx4= 480n
apxay =aq,—-ra.xa,=a,—- a, = -a,
E, = -480n sin(w ¢ - 5x)a.

' 1207

nZ: 80: \/7

_Mo-n, 60n-120m
T m,+m,  60n+120m

= 60n

r =-1/3, t=1+7=2/3

E, =TE, = (-1/3)(480n) = - 160n

E, = 160n sin(wt + 5x)a,

E =E+E =-1508sin(0t- 5x)a. +0.503sin(wt + Sx)a.

() E,=1E, = (2/3)(4801)= 320n

E?  (3201)
a =

2, = 260n)

© s= I+ 1+1/3

=N 1-1/3

P= a, = 2.68a, kW/m?

1}
N

Prob- 10033 T]I = ]’]o = 1201‘[, nz = :_'.?.
2
Eru n"—n/
== (1)
Em n:+‘]/

kV/m
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Combining (1) and (2),
N,-1y E
EI’) = ()HIO ( ) [ —-—) n(? ( )———
L n,+1n, n,+n,) H,
But E, _ 3.6 _ 3000
H T 12x107 T
-1 n,-377
N, = 30000 2 3772 3000 —————
T] PRI n,+ 377

Thus, n,=48537. Since  n,= /L:i
2

-9

, 1 .
Ha= e =5 x12.5x(485.37)° = 2604x10”° H/m

Prob. 10.34 7, = 1/% =n,/2, m,=n,
1

N.-n,
n,+m,

r= =1/3, t=]+1=4/3

E,=TE,=(/3)5)=5/4, E,=1E,=20/3

0 —
Bz-; prer 3 108[ 2/3

5
(@) E, = Ecos(logt -2y/3)a.

2 b 2
E,=E+E, =5sin(l0°t+ Ey)a: + Ecos(IOSI— }-y)a: V/m

2

l
(- ;)(— a,)=-00589a, W/m’

E
b) P =" (-g )+ Y=
( ) avel 2"]/ ¥ an v 2(601[)
ES 400 ) .
(€) B = 3 (-a,) = ——=———(-a,)= -0.0589a, W/m’

M. T 92)(1207)

I
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Prob. 1035 (a) f=/=0/u= H,E,

c 3x10°

O = = = 0.5x10% rad/s
\/p,s, V3x12

(b) n/ = u’

r=222V s =273

n,+n,

__1+|1"|_ 1+ 1/3_
S I-|r1-1/3

o

(c) Let H,=H,cos(wt+2z)a,, where

aExaH =a, —= "'ayxaH =-4a,—= a, = -a,

H= =150

Prob. 10.36 (a)

a.xa, =a, ——» agxa. =

i.e. polarization is along the y-axis.

2 ,,\/ no\/—-no/Z

1
E =- }-(3)cos(mt+ z)a, = —IOCqs(mH 2)a,,

0 .
cos(0.5x10°t + z)a, A/m=-26.53cos(0.5x10%¢ + z)a, mA/m

_ 2nx30 10°
(b) B=o0ue= HE, n; 1;8 V4x9 = 377 rad/m
¢ 0 0
— — 0H.
(c) J,=VxH=ax ox ox --‘a—'a
0 0 H.(x,tn) x

= -10B cos(at+Px)a, = -37.6cos(at + fx)a, mA/m
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@, nfi-2
n.’—nu’ N, =M, 9- 3”0

n.-1,
n.+n,

= =1/5, t=/+=6/5

E = 10n,sin(of+Bx)a, mV/m, a,=-a

E =710n,sin(ot- Bx)(—ay) mV/m
a/:'xah’ = ak — _ayxaH = ax —_— aH = —a:

H, =TI'10sin(of-Bx)(~a.) mA/m=-2sin(e? - pfx)a. mA/m

E, =110n,sin(0f+Bx)(-a,)mV '~
apxay = a,—- -axa,=-a,—- a, = a,

H =10(6/5)n,/n,)sin(0¢+ Px)a, mA/m =8sin(e’+ px)a. mA/m

2 2
- E102

E E
(€ Puoy==2(-a)+ 2(+a,)= (I-T)a,
‘ 2n, 2‘]/ 2n,
nlzl_[:oz

2n,

1 !
=L (g =- 161000~ 55)a, = ~0012064a, W /m’

Eol = Tl;m = Inll{m

2

2 _ t;’nIZH

Frer = ﬁ(—ax)— 2 ©(-a,)= 32n,(-a,) yW/m’ = -0.012064a, W/ m’
2

2

Prob. 10.37 (a) Inair, B,=/A,=2n/p,=21=6.283 m

o =p,c=3x10° rad/s
In the dielectric medium, @ is the same .

o =3x10" rad/s
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o= = err =B =3

LI LI o»

,= = —== 3, m
B, V3 =———
b) o=l 19 5065
( ° oy, 1200

ay = axa, = a.xa, = a,

H =-265cos(ot~-z)a, mA/m

(C) nI:no’ n/:no/"/}

N,y (1/\/})‘1
r: = -
nan, (I/N3)+1

-0.268, t=/1+7=0732

d) E,=tE, =732, E,=lE, =-268

E, = E +E, =10cos(at-z)a, - 268cos(ot + z)a, V/m

E,=E, =732cos(ot -~ z)a, V/m

/
Bt = %—(a:)[E,j - E,’]= (a.)(10° - 268%)=0.1231a. W/ m’
1

2(1207)

L4

(7.32)°(a.)= 0.1231a. W/ m?

) E)’ J}

T = 50 = S 0

Prob.10.38 (a) o =pc=3x3x/0%= 9x10° rad/s

(b) A=2n/B=2n/3=2094

o 4
() e ™ 9x107x80x107 /367 = 2" = 6:288
[0}
tan20, = —=6288 —-> 0, =4047"
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Vi,/¢e, _ 377
b / V80 =1671

, 2=
n v, \/1+41r
11+
0E,

N, = 167144047 0

n,-n, 167144047 - 377
Natn, 167124047"+ 377

d = =0.935/1767"

E,=TE, =935/1767"

E =935sin(wt~3z+1767)a, V/m

» (80
9"10\/ Vi - 1] = 43.94 Np/m

\QE,  3x10°

€,, o,
(12:0); Eﬂ?;_[ 1+(__;,)

v [30
9x10 J [\/1+4n +1] 5148 rad/m

B, = 3x10°

2n, 2x16.71£4047°
= = = = 0.0 57/ 8890
YT L4, 1671240477+ 377 - 0089743

E, =1E,=0857/3859°

E, = 0857¢"% sin(9x10°t + 5148z + 38.89°) V/m
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Prob. 10.39

L4

Prob. 10.40 Since p,= U, = p29

sm 45°

—
2.25
sinf , = sinf == W =02357 —> 8,=1363

Prob. 10.41

sinf,, = sin@, =03333 —>  0,=1947°

W

E _ 20(6’“‘“ _ e«/k,.r) (e/k‘y _ e-/k‘y) )
¢ 2 2 .

Curve Oisatt=0; curve 1 isat t="T/8; curve 2 isat t = T/4; curve 3 is at t = 3T/8, etc.



Antonio Pertence



274

o shkxek,p) (hox-ky) - j(kox-k,y) -k xek,
:_15[61 Nyl M _ o )_ejxy)]a'

which consists of four plane waves.

VxE = -jou H ~— —> H =—VxE = a,
' ‘ ‘ ¢y cx

j J (515; OE, )
u)ul) ) wul‘ a‘

s

207, . ,
Ho=-+ [ky sin(k,x)sin(k,y)a, + k, cos(k x)cos(k, ).)a}]

o

n. .
Prob. 1042 If p =y, =y, n,= +7=,1,= 7=
ErI 872
! 0 d 0
——cosf, - cosf,
ro= VE,2 VE,
W 1 ]
cosf, + -—=cosf,
er.’ Verl
€ sinf
R . 2
,/e,, sinf, = \/¢,,sinf, —- == —
€, sinf,
sinf,
cosb, - —*cosB, . .
sin@, sin@, cosf, - sin®, cosh,
I\ = 9 = .
sinb, sinf, cosf, + sin®, cos0
cosf, + — 8 cos@, ! !
sin

{

Dividing both numerator and denominator by cosf, cosf, gives

tanG’,—tanB,
tanf, - tan, /+tanf, tanf, tan(d,-9,)
“~ tanf, + tan, tand, +tanb, ~ tan(d, +0)
1+ tan@, tanf,

Similarly,

cosf,
. - E,, _ 2cos8,
= =

sinf,

1
—==cosf, + ==cosB, cosf,+ cosf,
e, e, sinf,

2cosh, sinf,

sinf, cosB (sin" 0, + cos™ 0,) + sin0, cosh (sin" 6, + cos™0,)
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(c) 8,=0,=3687". Let

— i

2cosb, sin@,
(smG cos, + sin 6, cos 6,)(cosh, cosf, +sin 6,sin 0,)

2¢osb, sinb,
sin(9, + 6,)cos(6,-6,)

6
==Cosf, - =cos0, -
,/s . ,/ i cos®, m9 0sf, _sin(®,-9,)
cosO + ——=cosb, cosf,+ .m cosf, sin®, +6,) ‘!
,/ ,/ sin@, ‘
2 :
cosf, ‘ .
_ VE,» _ 2cosG _ 2cosb, sind,
\/——cose + ‘/—cose cosb, + 9 -cosf, sin(®, +9,) '
Prob.10.43 (a) £, = 4a,+ 3a, !
l
kiea,=kcosb, —-> cos,=4/5 —o> 0,=3687°

. E}? (,/82 +6°)’ (3a, + 4a,) .
Re( ExH, )= 2 a, = 221 20m 3 =79.58a,+ 106.1a, mW/m=

I
2

E =(E,a +E, a)sin(ot-k er)

™~ |
k, i
\/ E, 1.
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From the figure, k, =-k.a. -k a, But k =k =35
k.=k sinb, =53/5)=3, k, =kcosb, =5(4/3)=H,

Hence, &, =-4a, +3a,

sinf, =

3/5
sinf = sinf = ——=0.3
n, RN TRE- e

0,=1746,cos0,=09539, n,=n,=120n,m,=1,/2=60n

E o (0.9539)-1,(08)
ro 2
[;/ = =

E, n,cosB,+n,cosh, %(0’9539” n,(0.8)

n,cosd, - 1, cosf, - 0253

E,=Tl,E,=-0253(10)=-253
. 3 4
But (E,a,+E.a,)=E,(sinb,a,+cosd,a,)= _2,53(3‘,’ + Ea‘)

E, =-(1518a,+ 2.024a )sin(ot+ 4y- 3z) V/m

Similarly, let

E =(Eja,+E.a)sin(ol-ker)

k,=B2=m\/p252 =mJ4poao
But &k = B,=m,/poeu

k

~=2 —o  k=2k=10
k,
k, =k cosb, =9539, k.= ksind, =3,
k, = 9.539a, + 3a.

Note that k_= k.= k_.=3
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21, cosf 08
S L EL oL TR 1,(05) = 06265

E, mn,cosb,+n,cosh, '1,,(09539)+n(08)

E,=1E =0265
But

(E,a,+ E.a.)= E,(sind,a, - cosh,a.) = 0.256(0.3a, - 0.9539a.)

ﬂ V
Hence,

E, = (1877a,- 5968a.)sin(w! - 9.539y- 3z) V/m
] y b

Prob. 10.44 (a)

=/’§—L —  0,:0,=17947°

tan6

!

L
: \/—

1 o

sinf, = sinf, =3 —=  0,=90
r2

9

10
(b) ﬁ,=% e = 3 07 53" 10= kJ1+ =3k —- k=333

(c) A=2n/B, A,=2n/B,=2n/10=06283 m

B,=0/c=10/3, A,=21/B,=21x3/10=1885m

v J8a)

(d) E, =n,axH = 407 ~—*——=1 CH 3

——x0. 2cos(a) 1-ker)a,

= (-213.3a,+754a.)cos(10°t - kx - k+/8z) V/m

( _ 2cosb, sinf, _ 2c0s1947°sin90°
©) U i@, 40 )cos(®. -0,) sin/947°cosi947"

cot/947°

cot/947°

Let FE =-E,(cosb,a, ~sinB a )cos(/0"1-P xsinb, - B zcosh,)

where

— i

L
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E = -E, (cosb,a, -sinb a. )cos(/0°t-B,xsind, - B,zcosh,)
sin@, =/, cosb,=0, P,sinB,=70/3
E, sinb, =t E, = 6Q24n0)(3)() = 1357.2

Hence,

E, = 1357cos(10°t - 3.333x)a, V/m

Since '=-/, 6, =6

E, =(2133a,+754a.)cos(10°t - kx + kv/82z) V/m

€, Eo 0
0 tan9,,,,=‘/'g=‘f980=1/3 — > 0,,=1843

Prob. 10.45

B,=v3+4#=5=0/c —-> o0=Pp,c=15x10°rad/s

Let E =(E,,E

ox?® “oy?

E )sin(o?+ 3x+ 4y). Inorder for

VeE =0, 3E,+4E, =0 )

Also, at y=0, Ejan=FEam =0
E. =0, 8a.+5a.+E a +E.a =0

Equating components, E_=-8, E_=-5

ox

From (1), +4E,=-3E, =24 E, =6

oy — oy

Hence,
E =(-8a +6a, - 5a)sin(I5x10°t+ 3x+ 4y) V/m

Prob. 10.46 Since both media are nonmagnetic,

N
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€
tan6 ,, =  [—
&

26
/88” =1612 —> 8, =5819°

But
r‘l nn < ‘
cosh, = ——cosb ,, = ——==cosb ,, = V26 c0os38./9" —o 0, =318
n 2 " no/ 26 ! B

-

L
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ENGINEERING ELECTROMAGNETICS

where Re signifies that the real part of the following quantity is to be taken. If we
then simplify the nomenclature by dropping Re and suppressing e/®, the field
quantity £, becomes a phasor, or a complex quantity, which we identify by use
of an s subscript, Ey,. Thus

Eq = E(x, y, 2)e’V (7
and
Es - Exsax

The s can be thought of as indicating a frequency domain quantity expressed as a
function of the complex frequency s, even though we shall consider only those
cases in which s is a pure imaginary, s = jw.

IIII*Example 11.1
Let us express £, = 100 cos(108/ — 0.5z + 30°) V/m as a phasor.

Solution. We first go to exponential notation,
E = Re[looej(1031—0,5:+300)]
and then drop Re and suppress ¢/1°', obtaining the phasor
E,, = 100e 70530

Note that E, is real, but E, is in general complex. Note also that a mixed
nomenclature is commonly used for the angle. That is, 0.5z is in radians, while
30° is in degrees.

Given a scalar component or a vector expressed as a phasor, we may easily
recover the time-domain expression.

IIII»Example 11.2
Given the field intensity vector, E¢ = 100/30°ay + 20/ — 50°a, 4+ 40/210%a, V/m, iden-
tified as a phasor by its subscript s, we desire the vector as a real function of time.

Solution. Our starting point is the phasor,
E = 100/30°ay + 20/ — 50°ay + 40/210°a, V/m

Let us assume that the frequency is specified as 1 MHz. We first select exponential
notation for mathematical clarity,

Es = 100e/30 ay + 207 ay, + 40¢72'% a, V/m
reinsert the ¢/® factor,

Eq(t) = (100073 ay + 206750 a, + 407210 a,)e 2710

_ 100ej(2n106r+30°)ax + ZOef(z”'OG”SOO)aV + 4oej(2n106t+210°)az

4| p | eTextMainMenu | Textbook Table of Contents



THE UNIFORM PLANE WAVE

and take the real part, obtaining the real vector,
E(t) = 100 cos(27710°¢ + 30°)ay + 20 cos(2710°7 — 50°)ay + 40 cos(2710° + 210°)a,

None of the amplitudes or phase angles in this example are expressed as a
function of x, )y, or z, but, if any are, the same procedure is effective. Thus, if
H, = 200142073 A/m, then

H(t) = Re[20e*7e 720/ a, = 20e~"!% cos(wt — 20z)ay A/m

Now, since
dE, 9 ,
el E[E(x, v, z)cos(wt + ¥)] = —wE(x, y, z) sin(wt + )
= Re[waxseth]

it is evident that taking the partial derivative of any field quantity with respect to
time is equivalent to multiplying the corresponding phasor by jw. As an example,
if

OE, 1 0H,

a e Oz

the corresponding phasor expression is
1 0H
waxs - - x
€0 0z

where E,, and H,, are complex quantities. We next apply this notation to
Maxwell’s equations. Thus, given the equation,

VxH=¢—
0ot

the corresponding relationship in terms of phasor-vectors is

V x Hy = jwegEg 8)

Equation (8) and the three equations

V x Es = —jouoHs ©)
V.E =0 (10)
V.H, =0 (i

are Maxwell’s four equations in phasor notation for sinusoidal time variation in
free space. It should be noted that (10) and (11) are no longer independent
relationships, for they can be obtained by taking the divergence of (8) and (9),
respectively.
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The wavelength is

277'[ A c X
B oJue [Juwe [JUrér  JIrer

A= (lossless medium) |(42)

where X is the free space wavelength. Note that wgeg > 1, and therefore the
wavelength is shorter and the velocity is lower in all real media than they are in
free space.

Associated with E, is the magnetic field intensity

ExO

H, = cos(wt — Bz)
n

where the intrinsic impedance is

n= /" 43)
€

The two fields are once again perpendicular to each other, perpendicular to
the direction of propagation, and in phase with each other everywhere. Note that
when E is crossed into H, the resultant vector is in the direction of propagation.
We shall see the reason for this when we discuss the Poynting vector.

||II»Example 11.3

Let us apply these results to a 1 MHz plane wave propagating in fresh water. At this
frequency, losses in water are known to be small, so for simplicity, we will neglect €”. In
water, ug = 1 and at 1 MHz, € = eg = 81.

Solution. We begin by calculating the phase constant. Using (36) with €” = 0, we have

— wep  2m x 10°4/81
p=oue = oVinay/e; = Jc_R: 3.0 x 10°

Using this result, we can determine the wavelength and phase velocity:

=0.19 rad/m

_2j_2n’

=33
g9 7™M
o 27 x 10°

v =g="g = 33x 107 m/s

The wavelength in air would have been 300 m. Continuing our calculations, we find the
intrinsic impedance, using (39) with ¢” = 0:

/ 377
]7: ﬁ/: ,70, :7:429
€ ER 9
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If we let the electric field intensity have a maximum amplitude of 0.1 V/m, then
E.=0.1cos(2710% — .192) V/m

E. _
Hy==—=24x 10" cos(2710° — .19z) A/m
n

¢/ DIL3. A9.375-GHz uniform plane wave is propagating in polyethylene (see Appendix
C). If the amplitude of the electric field intensity is 500 V/m and the material is assumed
to be lossless, find: (a) the phase constant; (b) the wavelength in the polyethylene; (c) the
velocity of propagation; (d) the intrinsic impedance; (¢) the amplitude of the magnetic
field intensity.

Ans. 295 rad/m; 2.13 cm; 1.99 x 108 m/s; 251 ©; 1.99 A/m

|||I»Example 11.4

We again consider plane wave propagation in water, but at the much higher microwave
frequency of 2.5 GHz. At frequencies in this range and higher, dipole relaxation and
resonance phenomena® in the water molecules become important. Real and imaginary
parts of the permittivity are present, and both vary with frequency. At frequencies below
that of visible light, the two mechanisms together produce an €” that increases with
increasing frequency, reaching a local maximum in the vicinity of 10! Hz. €’ decreases
with increasing frequency. Ref. 3 provides specific details. At 2.5 GHz, dipole relaxation
effects dominate. The permittivity values are e, = 78 and €; = 7. From(35), we have

172

9 2
QT x25x10 W78 . (l) 1) — 20 Np/m
(3.0 x 10%)y/2 78

The first calculation demonstrates the operating principle of the microwave oven. Almost
all foods contain water, and so can be cooked when incident microwave radiation is
absorbed and converted into heat. Note that the field will attenuate to a value of ¢!
times its initial value at a distance of 1/a = 4.8 cm. This distance is called the penetra-
tion depth of the material, and of course is frequency-dependent. The 4.8 cm depth is
reasonable for cooking food, since it would lead to a temperature rise that is fairly
uniform throughout the depth of the material. At much higher frequencies, where €” is
larger, the penetration depth decreases, and too much power is absorbed at the surface;
at lower frequencies, the penetration depth increases, and not enough overall absorption
occurs. Commercial microwave ovens operate at frequencies in the vicinity of 2.5 GHz.

Using (36), in a calculation very similar to that for «, we find g = 464 rad/m. The
wavelength is A =27/8 = 1.4 cm, whereas in free space this would have been
ro = L/f =12 cm.

3 These mechanisms and how they produce a complex permittivity are described in Appendix D.
Additionally, the reader is referred to pp. 73-84 in Ref. 1 and pp. 678-682 in Ref. 2 for general treatments
of relaxation and resonance effects on wave propagation. Discussions and data that are specific to water
are presented in Ref. 3, pp. 314-316.
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Using (39), the intrinsic impedance is found to be

377 i
o 34j19=4326Q
=R T 7778) /

and E, leads H, in time by 2.6° at every point.

We next consider the case of conductive materials, in which currents are
formed by the motion of free electrons or holes under the influence of an electric
field. The governing relation is J = oE, where o is the material conductivity.
With finite conductivity, the wave loses power through resistive heating of the
material. We look for an interpretation of the complex permittivity as it relates to
the conductivity. Consider the Maxwell curl equation (8) which, using (33),
becomes:

V x Hy = jao(e' — je")Es = we"Es + jwe Eq (44)

This equation can be expressed in a more familiar way, in which conduction
current is included:

V x Hy = Jg + joweEs (45)
We next use J; = oK, and interpret € in (41) as €’. Eq. (45) then becomes:
VxHs= (o +jw€/)Es = Jos + s (46)

which we have expressed in terms of conduction current density, J,; = oE;, and
displacement current density, Jg = joe’E;. Comparing Egs. (44) and (46), we
find that in a conductive medium:

(47)

Let us now turn our attention to the case of a dielectric material in which
the loss is very small. The criterion by which we would judge whether or not the
loss is small is the magnitude of the loss tangent, €¢”/¢’. This parameter will have
a direct influence on the attenuation coefficient, «, as seen from Eq. (35). In the
case of conducting media in which (47) holds, the loss tangent becomes o/we’. By
inspecting (46), we see that the ratio of condution current density to displace-
ment current density magnitudes is

Jn_&_ o (48)
Jas  Je' jwe’
That is, these two vectors point in the same direction in space, but they are 90°
out of phase in time. Displacement current density leads conduction current
density by 90°, just as the current through a capacitor leads the current through
a resistor in parallel with it by 90° in an ordinary electric current. This phase
relationship is shown in Fig. 11.2. The angle 6 (not to be confused with the polar
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FIGURE 11.2

The time-phase relationship between Jg, Jos,
Js, and E;. The tangent of 0 is equal to o/we,
and 90°—6 is the common power-factor
angle, or the angle by which J; leads Ej;.

angle in spherical coordinates) may therefore be identified as the angle by which
the displacement current density leads the total current density, and

tan6 = 66— =— (49)

The reasoning behind the term “loss tangent” is thus evident. Problem 16 at the
end of the chapter indicates that the Q of a capacitor (its quality factor, not its
charge) which incorporates a lossy dielectric is the reciprocal of the loss tangent.

If the loss tangent is small, then we may obtain useful approximations for
the attenuation and phase constants, and the intrinsic impedance. Considering a
conductive material, for which €¢” = o/w, (34) becomes

. . . 0
Jjk = jo/pue’ 1 —j (50)

we’
We may expand the second radical using the binomial theorem

M=) 5 0= =2)

1 =1
1+ x) + nx + @ X 3

+...

where |x| < 1. We identify x as —jo/we’ and n as 1/2, and thus

1 2
jk:ja)\/ue’[l —jz:;/—i—g(G) +j| =a+jp

we’

Now

a:Re(jk)ﬁjw/;?(—j a ):5 Lad (51)

2we’ 2Ve
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and

we’

B = Imqk)iw\/ﬁ[l +é( 7 )2] (524)

or in many cases

B=w/ e’ (52b)
Applying the binomial expansion to (39), we obtain
Az 3/0\2 . o
= e’|:1 8 (we’) + 2a)e’} (534)
or
. ju .o
= /—(1
7 e’( +J2we’> (33)

The conditions under which the above approximations can be used depend on
the desired accuracy, measured by how much the results deviate from those given
by the exact formulas, (35) and (36). Deviations of no more than a few percent
occur if o/we’ < 0.1.

||II»Example 11.5

As a comparison, we repeat the computations of Example 11.4, using the approximation
formulas, (51), (52b), and (53b).

Solution. First, the loss tangent in this case is €”/e¢’ = 7/78 = 0.09. Using (51), with
€’ = o/w, we have

377

—— =2lcm™!

V78

2
We then have, using (52b),
B=(27 x 2.5 x 10°)3/78/(2.99 x 10%) = 464 rad/m
Finally, with (535),

" 1
o= \/GE = 5(7 X 8.85 x 10727 x 2.5 x 10°)

377 7
=2 i ) =43+1.9
g m( +‘/2><78> +J

These results are identical (within the accuracy limitations as determined by the given
numbers) to those of Example 11.4. Small deviations will be found, as the reader can
verify by repeating the calculations of both examples and expressing the results to four
or five significant figures. As we know, this latter practice would not be meaningful
since the given parameters were not specified with such accuracy. Such is often the case,
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thickness of about 1/2 in would be a much better design. Although we are
applying the results of an analysis for an infinite planar conductor to one of
finite dimensions, the fields are attenuated in the finite-size conductor in a similar
(but not identical) fashion.

The extremely short skin depth at microwave frequencies shows that only
the surface coating of the guiding conductor is important. A piece of glass with
an evaporated silver surface 0.0001 in thick is an excellent conductor at these
frequencies.

Next, let us determine expressions for the velocity and wavelength within a
good conductor. From (62), we already have

1
a:ﬂ:g:\/nfpw

Then, since

21
P=%
we find the wavelength to be
A =278 (63)
Also, recalling that
o)
Uy =—
"B
we have
vy = wd (64)

For copper at 60 Hz, A = 5.36 cm and v, = 3.22 m/s, or about 7.2 mi/h. A lot of
us can run faster than that. In free space, of course, a 60-Hz wave has a wave-
length of 3100 mi and travels at the velocity of light.

I Example 11.6

Let us again consider wave propagation in water, but this time we will consider sea-
water. The primary difference between seawater and fresh water is of course the salt
content. Sodium chloride dissociates in water to form Na* and CI~ ions, which, being
charged, will move when forced by an electric field. Seawater is thus conductive, and so
will attenuate electromagnetic waves by this mechanism. At frequencies in the vicinity of
10”7 Hz and below, the bound charge effects in water discussed earlier are negligible, and
losses in seawater arise principally from the salt-associated conductivity. We consider an
incident wave of frequency 1 MHz. We wish to find the skin depth, wavelength, and
phase velocity. In seawater, 0 =4 S/m, and € = 81.
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Solution. We first evaluate the loss tangent, using the given data:

o 4
we' (21 x 109)(81)(8.85 x 10-12)

=89x 10> 1

Thus, seawater is a good conductor at I MHz (and at frequencies lower than this). The
skin depth is

°= Jnjlma ~ o x 106)(4:71 <10 @) 023 m =25 cm
Now
A=2n85=1.6m
and

v, = w8 = (21 x 10°)(0.25) = 1.6 x 10° m/sec

In free space, these values would have been A = 300 m and of course v = c.

With a 25 cm skin depth, it is obvious that radio frequency communication in
seawater is quite impractical. Notice however that § varies as 1 /\/]7 , so that things
will improve at lower frequencies. For example, if we use a frequency of 10 Hz in the
extremely low frequency (ELF) range, the skin depth is increased over that at 1| MHz by
a factor of /109/10, so that

8(10Hz) = 80m

The corresponding wavelength is A = 278 = 500 m. Frequencies in the ELF range are in
fact used for submarine communications, chiefly between gigantic ground-based anten-
nas (required since the free-space wavelength associated with 10 Hz is 3 x 107 m) and
submarines, from which a suspended wire antenna of length shorter than 500 m is
sufficient to receive the signal. The drawback is that signal data rates at ELF are so
slow that a single word can take several minutes to transmit. Typically, ELF signals are
used to tell the submarine to implement emergency procedures, or to come near the
surface in order to receive a more detailed message via satellite.

We next turn our attention to finding the magnetic field, H,, associated

with E,. To do so, we need an expression for the intrinsic impedance of a good
conductor. We begin with Eq. (39), Sec. 11.2, with ¢” = 0/w,

0= Jop
o+ jwe’

_ Jjop
p= 2k
o
V245 1]

SR 65
M= s o5 o (65)

which may be written as

4| p | eTextMainMenu | Textbook Table of Contents

373



400

ENGINEERING ELECTROMAGNETICS

I Example 12.3

A uniform plane wave in air partially reflects from the surface of a material whose
properties are unknown. Measurements of the electric field in the region in front of the
interface yield a 1.5 m spacing between maxima, with the first maximum occurring 0.75
m from the interface. A standing wave ratio of 5 is measured. Determine the intrinsic
impedance, 7,, of the unknown material.

Solution. The 1.5 m spacing between maxima is /2, implying a wavelength is 3.0 m, or
/=100 MHz. The first maximum at 0.75 m is thus at a distance of 1/4 from the
interface, which means that a field minimum occurs at the boundary. Thus I will be
real and negative. We use (27) to write

s—1 5—-1 2

F: = = —
Il s+1 S5+1 3
So
2 _
= 7_7714 no
3 Ny + Mo
which we solve for 7, to obtain
1 377
w==ng=—="754Q
n 5770 5

12.3 WAVE REFLECTION FROM MULTIPLE
INTERFACES

So far we have treated the reflection of waves at the single boundary that occurs
between semi-infinite media. In this section, we consider wave reflection from
materials that are finite in extent, such that we must consider the effect of the
front and back surfaces. Such a two-interface problem would occur, for example,
for light incident on a flat piece of glass. Additional interfaces are present if the
glass is coated with one or more layers of dielectric material for the purpose (as
we will see) of reducing reflections. Such problems in which more than one
interface is involved are frequently encountered; single interface problems are
in fact more the exception than the rule.

Consider the general situation shown in Fig. 12.6, in which a uniform plane
wave propagating in the forward z direction is normally incident from the left
onto the interface between regions 1 and 2; these have intrinsic impedances, 7,
and 7. A third region of impedance 73 lies beyond region 2, and so a second
interface exists between regions 2 and 3. We let the second interface location
occur at z = 0, and so all positions to the left will be described by values of z that
are negative. The width of the second region is /, so the first interface will occur
at position z = —/.

When the incident wave reaches the first interface, events occur as follows: A
portion of the wave reflects, while the remainder is transmitted, to propagate
toward the second interface. There, a portion is transmitted into region 3, while
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With the conditions given by (44) and (46) satisfied, we have performed quarter-
wave matching. The design of anti reflective coatings for optical devices is based
on this principle.

IIII»Example 12.5

We wish to coat a glass surface with an appropriate dielectric layer to provide total
transmission from air to the glass at a wavelength of 570 nm. The glass has dielectric
constant, eg = 2.1. Determine the required dielectric constant for the coating and its
minimum thickness.

Solution. The known impedances are n; =377 Q and n3; = 377/4/2.1 =260 Q2. Using
(46) we have

n = (377)(260) = 313 Q

The dielectric constant of region 2 will then be

377\°
€ER) = <m) =145

The wavelength in region 2 will be

Ao :ﬂ:473nm

1.45

The minimum thickness of the dielectric layer is then

l:%: 118 nm = 0.118 um

The procedure in this section for evaluating wave reflection has involved
calculating an effective impedance at the first interface, 7;,, which is expressed in
terms of the impedances that lic beyond the front surface. This process of impe-
dance transformation is more apparent when we consider problems involving
more than two interfaces.

For example, consider the three-interface situation shown in Fig. 12.7,
where a wave is incident from the left in region 1. We wish to determine the
fraction of the incident power that is reflected and back-propagates in region 1,
and the fraction of the incident power that is transmitted into region 4. To do
this, we need to find the input impedance at the front surface (the interface
between regions 1 and 2). We start by transforming the impedance of region 4
to form the input impedance at the boundary between regions 2 and 3. This is
shown as 7;,, in the figure. Using (41), we have

14 €08 B3l + jn3 sin B3l
13 cos B3l + jna sin B3l

Ninp = N3 47)
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I Example 12.6

Consider a 50 MHz uniform plane wave having electric field amplitude 10 V/m. The
medium is lossless, having eg = €, = 9.0 and ug = 1.0. The wave propagates in the x, y
plane at a 30° angle to the x axis, and is linearly polarized along z. Write down the
phasor expression for the electric field.

Solution. The propagation constant magnitude is

B _wer  2m x50 x 10°(3) _ 1
k=w/ne= = 35 10° =3.14m

The vector k is now
k = 3.14(cos 30 a, + sin 30 ay) = 2.7ay + 1.6a, m ™"
Then
r=xax+yay
With the electric field directed along z, the phasor form becomes

ES — Eoe—jk-r a, = loe—j(2.7x+l.6y) a,

V D12.4. For Example 12.6, calculate Ay, Ay, vy, and vy,.

Ans. 2.3 m; 3.9 m; 1.2 x 10% m/s; 2.0 x 10 m/s.

12.5 PLANE WAVE REFLECTION AT
OBLIQUE INCIDENCE ANGLES

We now consider the problem of wave reflection from plane interfaces, in
which the incident wave propagates at some angle to the surface. Our objec-
tives are (1) to determine the relation between incident, reflected, and trans-
mitted angles, and (2) to derive reflection and transmission coefficients that are
functions of the incident angle and wave polarization. We will also show that
cases exist in which total reflection or total transmission may occur at the
interface between two dielectrics if the angle of incidence and the polarization
are appropriately chosen.

The situation is illustrated in Fig. 12.9, in which the incident wave direction
and position-dependent phase are characterized by wavevector, k. The angle of
incidence is the angle between ki and a line that is normal to the surface (the x
axis in this case). The incidence angle is shown as 6. The reflected wave, char-
acterized by wavevector ki, will propagate away from the interface at angle 6.
Finally, the transmitted wave, characterized by k,, will propagate into the second
region at angle 6, as shown. One would suspect (from previous experience) that
the incident and reflected angles are equal (6; = 6,), which is correct. We need to
show this, however, to be complete.

The two media are lossless dielectrics, characterized by intrinsic impe-
dances, n; and 7,. We will assume, as before, that the materials are non-
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where we have used n; = no/n; and n, = no/ny. We call this special angle, 63,
where total transmission occurs, the Brewster angle or polarization angle. The
latter name comes from the fact that if light having both s- and p-polarization
components is incident at 8; = g, the p component will be totally transmitted,
leaving the partially reflected light entirely s-polarized. At angles that are slightly
off the Brewster angle, the reflected light is still predominantly s-polarized. Most
reflected light that we see originates from horizontal surfaces (such as the surface
of the ocean), and as such, the light is mostly of horizontal polarization. Polaroid
sunglasses take advantage of this fact to reduce glare, since they are made to
block transmission of horizontally polarized light, while passing light that is
vertically polarized.

I Example 12.9

Light is incident from air to glass at Brewster’s angle. Determine the incident and
transmitted angles.

Solution. Since glass has refractive index n, = 1.45, the incident angle will be

L n .1 1.45 > R
0y =60 =sin N— = Sin ——— | =554
e [ 2 <~/1.452+1

1 2

The transmitted angle is found from Snell’s law, through

6, = sin”! (n—l sin 03) = sin”! _m |- 34.6°
1 Jm 4+

Note from this exercise that sin 6, = cosp, which means that the sum of the incident
and refracted angles at the Brewster condition is always 90°.

vV D125 In Example 12.9, calculate the reflection coefficient for s-polarized light.
Ans. —0.355

Many of the results we have seen in this section are summarized in Fig.
12.12, in which ', and T, from (69) and (71), are plotted as functions of the
incident angle, 6;. Curves are shown for selected values of the refractive index
ratio, n/n,. For all plots in which n;/ny > 1, I'y and I', achieve a value of £1 at
the critical angle. At larger angles, the reflection coefficients become imaginary
(and are not shown) but nevertheless retain magnitudes of unity. The occurrence
of the Brewster angle is evident in the curves for I', (Fig. 12.12a), as all curves
cross the 6; axis. This behavior is not seen in the I'; functions (Fig. 12.12b), as Iy
is positive for all values of 6; when n;/n; > 1, and is negative for n;/n, < 1.
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Referring to the w-g8 diagram, Fig. 12.14, we recognize the carrier phase velocity
as the slope of the straight line that joins the origin to the point on the curve
whose coordinates are wy and ). We recognize the envelope velocity as a quan-
tity that approximates the slope of the w-g curve at the location of an operation
point specified by (wy, By). The envelope velocity in this case is thus somewhat
less than the carrier velocity. As Aw becomes vanishingly small, the envelope
velocity is identically the slope of the curve at wy. We can thus state the following
for our example:

Aw do

A Ag = apl, = ) ®3)

wo

The quantity dw/dp is called the group velocity function for the material, vy(w).
When evaluated at a specified frequency, wy, it represents the velocity of a group
of frequencies within a spectral packet of vanishingly small width, centered at
frequency wy. In stating this, we have extended our two-frequency example to
include waves that have a continuous frequency spectrum. To each frequency
component (or packet) is associated a group velocity at which the energy in that
packet propagates. Since the slope of the w-f curve changes with frequency,
group velocity will obviously be a function of frequency. The group velocity
dispersion of the medium is, to first order, the rate at which the slope of the w-
B curve changes with frequency. It is this behavior that is of critical practical
importance to the propagation of modulated waves within dispersive media, and
the extent to which the modulation envelope may degrade with propagation
distance.

[ Example 12.10

Consider a medium in which the refractive index varies linearly with frequency over a
certain range:

1)
n(w) = ny—
[20)]

Determine the group velocity and the phase velocity of a wave at frequency wy.

Solution. First, the phase constant will be

o) = )2 ="
¢ wc
Now
d_ﬂ _ 2nyw
do  wyc
so that
_do  wyc

Y _ﬁ_ 2npw
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I Example 12.11

An optical fiber channel is known to have dispersion, 8, = 20 ps®>/km. A Gaussian light
pulse at the input of the fiber is of initial width 7" = 10 ps. Determine the width of the
pulse at the fiber output, if the fiber is 15 km long.

Solution. The pulse spread will be

_ Bz _0)(15) _

A
T 10

30 ps

So the output pulse width is

T' =/(10)* + (30)> = 32 ps

An interesting by-product of pulse broadening through chromatic disper-
sion is that the broadened pulse is chirped. This means that the instantaneous
frequency of the pulse varies monotonically (either increases or decreases) with
time over the pulse envelope. This again is just a manifestation of the broadening
mechanism, in which the spectral components at different frequencies are spread
out in time as they propagate at different group velocities. We can quantify the
effect by calculating the group delay, 7,, as a function of frequency, using (92).
We obtain:

g=—= Z% = (B1 + (0 — w0)B2)z (95)

Vg

This equation tells us that the group delay will be a linear function of frequency,
and that higher frequencies will arrive at later times, if 8, is positive. We refer to
the chirp as positive if lower frequencies lead the higher frequencies in time
(requiring a positive B, in (95)); chirp is negative if the higher frequencies lead
in time (negative ;). Fig. 12.17 shows the broadening effect and illustrates the
chirping phenomenon.

V D12.6. For the fiber channel of Example 12.11, a 20 ps pulse is input instead of the
10 ps pulse in the example. Determine the output pulsewidth.

FIGURE 12.17
Gaussian pulse intensities as functions
of time (smooth curves) before and
after propagation through a dispersive
medium, as exemplified by the w-f dia-
27 gram of Fig. 12.16b. The electric field
oscillations are shown under the sec-
= 27" ond trace to demonstrate the chirping
effect as the pulse broadens. Note the
reduced amplitude of the broadened
pulse, which occurs because the pulse
energy (the area under the intensity
envelope) is constant.

=¥
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CHAPTER 11

11.1. Show that E,; = Ae/%02+® jsa solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
ko = w./mo€g and any ¢ and A: Wetake

d2 . .
5 AT = (jko) Al = iZE,,

11.2. Let E(z,t) = 200sin0.2z cos108¢a, + 500 cos(0.2z + 50°) sin108¢a, V/m. Find:
a) Eat P(0,2,0.6)ar=25ns Obtain

Ep(t = 25) = 200sin[(0.2)(0.6)] cos(2.5)a, + 500cos[(0.2)(0.6) + 50(2r)/360] sin(2.5)ay
= —19.2a, + 164a, V/m

b) |[E|at Patr=20ns

Ep(t = 20) = 200sin[(0.2)(0.6)] cos(2.0)a, + 500 cos[(0.2)(0.6) + 50(27)/360] sin(2.0)a,
= —9.96a, + 248a, V/m

Thus |[Ep| = /(9.96)2 + (248)2 = 249 V/m.
C) Eyat P. E; = 200sin0.2za, — j500c0s(0.2z + 50°)a,. Thus

Esp = 200sin[(0.2)(0.6)] a, — j500c0s[(0.2)(0.6) + 27(50)/360] a,
=23.9a, — j273a, V/m

11.3. AnH field in free spaceis given asH (x, r) = 10cos(10% — Bx)a, A/m. Find
a) B: Since we have a uniform plane wave, 8 = w/c, where we identify @ = 10® sec™1. Thus
B = 108/(3 x 108) = 0.33 rad/m.

b) A: Weknow A = 27/8 = 18.9m.

¢) E(x,r) a P(0.1,02,03)ar =1ns Use E(x,t) = —noH (x,1) = —(377)(10) cos(10% —
Bx) = —3.77 x 10° cos(10% — Bx). The vector direction of E will be —a,, since we require that
S = E x H, where Sis x-directed. At the given point, the relevant coordinateis x = 0.1. Using
this, dlong with r = 10~° sec, we finally obtain

E(x, 1) = —3.77 x 10% cos[(108)(107°) — (0.33)(0.1)]a, = —3.77 x 10%c0s(6.7 x 10~?)a,
= —3.76 x 10°a, V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
E, = (40 — j30)e /2%, V/m. Find:
a) w: From the given expression, we identify 8 = 20 rad/m. Thenw = ¢ = (3 x 10%)(20) =
6.0 x 10° rad/s.

b) B = 20 rad/m from part a.
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11.4. (continued)
C) f=w/2r =956 MHz.

d) L =27/ =27/20=0.314m.
e) H;: Infree space, we find H by dividing E; by 1o, and assigning vector components such that
Es; x Hy givesthe required direction of wave travel: We find

40— 30

H
s 377

e~ = (0.11— j0.08)e /2% a, A/m

f) H(z,t) a P(6,—1,0.07),r = 71 ps.
Hz 1) = Re[Hsej“”] = [0.11 c0s(6.0 x 10% — 20z) + 0.08sin(6.0 x 10% — 2oz)] a,
Then

H(.07, 1 = 71ps) = [0.11 cos[(G.O x 10%)(7.1 x 10~ 11y — 20(.07)]

+.08sin[(6.0 x 10%(7.1x 1071 - 20(07) || 3,
= [0.11(0.562) — 0.08(0.827)]a, = —6.2 x 10~3a, A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hy = (4 + j10)(2a, + ja,)e /= A/m.

a) Find numerical values for w, A, and B: First, w = 27 x 150 x 10° = 37 x 108 sec™!. Second,
for a uniform plane wave in free space, A = 27c/w = ¢/f = (3 x 10%)/(1.5 x 10%) = 2m.
Third, 8 = 27 /A = 7 rad/m.

b) FindH(z,¢t)atr = 1.5ns,z =20 cm: Use

H(z, 1) = Re{H,e/®"} = Re{(4 + j10)(2a, + jay)(cos(wt — Bz) + j sin(wt — Bz)}
= [8cos(wt — Bz) — 20sin(wt — Bz)] &, — [10cos(wt — Bz) 4+ 4sin(wt — Bz)] @,

. Now at the given position and time, wr — 8z = (37 x 108)(1.5 x 10~%) — 7(0.20) = = /4. And
cos(rt/4) = sin(r/4) = 1/4/2. Sofinally,

1
H(z = 20cm, t = 1.5ns) = -7 (12a, + 14a,) = —8.5a, — 9.9a, A/m

C) What is|E|qx? Have | E|nax = 10l H |imax, Where
|Hlmax = y/Hy - Hi = [4(4+ j10)(4 = j10) + (j)(—j)(4+ j10)(4 — j10)]Y/> = 24.1A/m

Then | E |mar = 377(24.1) = 9.08 KV /m.
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116. Let ug = eg = 1forthefield E(z, t) = (25a, — 30a,) cos(wt — 50z) V/m.
a) Findw: w = ¢ = (3 x 108)(50) = 15.0 x 10° s~ L.
b) Determine the displacement current density, J;(z, t):

oD .
Ju(z, 1) = 5 = —eow(25a, — 30ay) sin(wt — 50z)

= (—3.32a, + 3.98a,) Sin(1.5 x 10'% — 50z) A/m?

¢) Find the total magnetic flux ® passing through the rectangle defined by 0 < x < 1, y = 0,
0 <z <1 atr = 0: Infree space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

25 30
H(z,t) = (—ay + —ax> cos(wt — 50z) A/m
Yl no

Then B(z,t) = pnoH(z,1) = (1/¢)(25a, + 30a,) cos(wt — 50z) Wb/m?2, where uo/ng =
Jio€o = 1/c. Theflux atr = Oisnow

O] flle a,dxd f125cos(50)d 2 sin(50) 0.44 nWb
= . X = _— = —-—— = —U.
o Jo o =) “ %= 503 x 108) ==

11.7. The phasor magneticfield intensity for a400-MHz uniform plane wave propagating in acertain lossless
material is (2a, — j5a;)e~/2>* A/m. Knowing that the maximum amplitude of E is 1500 V/m, find g,
n, A, Vp, €R, g, aNdH(x, y, z, t): First, fromthe phasor expression, weidentify g = 25 m~1 from the
argument of the exponential function. Next, we evaluate Hyp = |[H| = vH - H* = v/22 + 52 = {/29.
Thenn = Eo/Ho = 1500/4/29 = 278.5 Q. Then A = 2n/B = 27/25 = .25 m = 25 cm. Next,

27 x 400 x 10°
o= o= LT 101 % 108 mys
B 25 7
Now we note that
n=2785=2377 KR - HER _o546
€R €R

And c

v, = 1.01 x 10% = = uger =8.79

! JERER RER

We solve the above two equations simultaneously to find e = 4.01 and g = 2.19. Finally,

H(x,y,z2,1) = Re {(Zay _ j5az)e*125xejwt}

= 200s(27 x 400 x 10% — 25x)a, + 5sin(27 x 400 x 10% — 25x)a,
= 2c0s(87 x 10% — 25x)a, 4 5sin(8r x 108 — 25x)a, A/m
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11.8. Let the fields, E(z, t) = 1800cos(10’wt — Bz)a, V/m and H(z, ) = 3.8cos(10’zt — Bz)a, A/m,
represent a uniform plane wave propagating at avelocity of 1.4 x 108 m/sin aperfect dielectric. Find:
a) B =w/v=(10"7)/(1.4 x 10%) = 0.224m~1,

b) A =2r/p =2r/.224=280m.
¢) n=|E|/|H| = 1800/3.8 = 474 Q.

d) wg: Havetwo equationsinthetwo unknowns, g andeg: n = no/ur/€r and B = w./ILr€R/c.
Eliminate eg to find

2.69

C[Ben]? [(224(3x 1084747
MR_[w_no} _[ (1077) (377) } B

€) er = 1r(o/m)?* = (2.69)(377/474)* = 1.70.

11.9. A certain lossless material has ug = 4 and eg = 9. A 10-MHz uniform plane wave is propagating in
the a, direction with E.o = 400V/mand Eyo = E,o =0at P(0.6,0.6,0.6) att = 60 ns.

a) Find B, 1, v,, and n: For auniform plane wave,

27 x 107

B =w e = %/—MRGR = S5 V@ (© = 04 rad/m
Then i = (27)/8 = (27)/(0.47) = 5m. Next,
w 2w x 107 .
UP_E_—4nx10—1 =5x10"m/s

Finally,

4
n=J% =1 /@=377\/j=2519
€ €R 9

b) Find E(¢) (at P): We are given the amplitudeat t = 60nsand at y = 0.6 m. Let the maximum
amplitude be E ., sothat in general, E, = E 4 COS(wt — By). At the given position and time,

E, =400 = Ejpqy c0[(27 x 107)(60 x 107°) — (47 x 1071)(0.6)] = Enax c0S(0.967)
= —0.99E qx

S0 Eppax = (400)/(—0.99) = —403V/m. Thusat P, E(t) = —403cos(2r x 1077) V/m.

c) Find H(r): First, we note that if E at agiven instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, 7 is real, and we are
allowed to write H () = E(t)/n, where n istreated as negative and real. Thus

E((r) _ —403

51 cos(2r x 10~ 7r) = 1.61cos(2r x 10~ ') A/m

H(t) = H;(1) =

185



11.10. Given a 20MHz uniform plane wave with H; = (6a, — j2ay)e‘fZ A/m, assume propagation in a
lossless medium characterized by ex = 5 and an unknown (. g.
@ Find A, vy, g, andn: First, B = 1,504 = 21/ = 2 m. Next, v, = w/p = 21 x 20 x 10° =
4 x 10’ m/s. Then, ug = (B2c?)/(w%er) = (3 x 108)2/(4n x 107)2(5) = 1.14.

Finaly, n = novir/er = 377/ 1.14/5 = 180.

b) Determine E at theorigin at 1 = 20ns. We usetherelation |E| = n|H| and note that for positive z
propagation, apositivex component of H iscoupled to anegative y component of E, and anegative
y component of H iscoupled toanegativex component of E. WeobtainE; = —n(6a,+j2a,)e /.
Then E(z, 1) = Re{Eye/“'} = —6ncos(wt — z)ay + 2nsin(wt — z)a, = 360sin(wr — z)a, —
1080 cos(wt — z)ay. Withw = 4r x 107 sec™!, + = 2 x 1078 5 and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)a, — 1080(—0.809)a, = 212a, + 874a, V/m.

11.11. A 2-GHz uniform planewave hasanamplitudeof E,o = 1.4kV/mat (0, 0, 0, r = 0) and ispropagating
inthea, directioninamediumwheree” = 1.6x 10~ F/m, ¢’ = 3.0x 10~ F/m,and x = 2.5 uH/m.
Find:

a) Ey,a P(0,0,1.8cm) at 0.2 ns: To begin, we havetheratio, €” /¢’ = 1.6/3.0 = 0.533. So

> 1/2
/Me/ ¢

—6 —11
— (27 x 2 % 109)\/(2'5 x 10730 x 1077 [\/1 ¥ (533)2 — 1]1/2 — 28.1Np/m

2

1/2
/ Y\ 2
ﬂ:w,/%[ 1+(€€—,) +1} — 112rad/m

Ey(z, 1) = Lde™ 2 cos(4r x 10% — 1127) kV/m
Evaluating thisat r = 0.2 nsand z = 1.8 cm, find

Then

Thusin general,

E,(1.8cm,0.2ns) = 0.74kV/m

b) H, a P at 0.2 ns: We use the phasor relation, H,; = —E,;/n Where

o 1 25 x 10-6 1 ,
L S — 263+ j65.7 = 271/ 14° Q@
7 \/; =) \30x10 1 /T (533 J
S0 now
3\ ,—28.1z ,—j112
H,, — _Eys _ _(1.4 X 1(;7)f jl4oze j1127 b g2l 112 14 AJm
e
Then

H,(z,1) = —5.16e%8Y cos(4r x 107°¢ — 1127 — 14°)
This, when evaluated at t = 0.2 nsand z = 1.8 cm, yields

H,(1.8cm,0.2ns) = —3.0A/m
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11.12. TheplanewaveEg; = 300e—f’”‘ay V/mispropagating in amaterial for which u = 2.25 uH/m, ¢’ =9
pF/m, and ¢” = 7.8 pF/m. If v = 64 Mrad/s, find:
a) a: Weusethe general formula, Eq. (35):

> 1/2
IME/ €

—6 —12
— (64 x 106)\/(2'25 x 1075 < 1077 [\/1 +(867)2 — 1]1/2 — 0.116 Np/m

2
b) B: Using (36), we write

12
/ A4
ﬂ:w,/%[ 1+(€E—,) +1} — 311rad/m

) v, = w/B = (64 x 108)/(.311) = 2.06 x 10® m/s.
d) A =27/8 = 27/(.311) = 20.2m.
e) n: Using (39):

B \/ﬁ 1 _ [225x 107 1
n= €’ 1— j(el//el) - (SI% 10712 ./1— ](867)

f) Hy: With E; inthe positive y direction (at agiven time) and propagating in the positive x direction,
we would have a positive z component of Hy, at the same time. We write (with jk = o + jB):

qo_ B, _ 300
YT YT 43450/
= 0.69¢116% (/31 =/ 365 A /m

= 407 + j152 = 434.5¢/

e Ikra, = O.69e_‘”e_j’g’ce_j'?"saZ

9) E(3, 2,4, 10ns): The real instantaneous form of E will be
Ex,y,z,) = Re{Ese-"“”} = 300e™** cos(wt — Bx)ay
Therefore

E(3, 2,4, 10ns) = 300e 1% cog(64 x 10°)(10~8) — .311(3)]a, = 203V/m

11.13. Let jk = 0.2+ j1.5m 1 and n = 450 + j60 2 for a uniform plane wave propagating in the a,
direction. If w = 300 Mrad/s, find u, €', and €”: We begin with

= 450 + j60

R S
= \[ S @)
and

jk = jo/ue' /11— j(€/e’) =02+ jl.5
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11.13. (continued) Then
«_ M 1

nm* = — ——— = (450 + j60)(450 — j60) = 2.06 x 10° D
€’ /1 + (6///6/)2
and
(k) (k)" = o’pe’ \J1+ (€”/€)2 = (0.2 + j1.5)(0.2 — j1.5) = 2.29 2)
Taking theratio of (2) to (1),
(]k)(]k)* 2/ 1\2 N ANE 2.29 _ —5
Then with w = 3 x 108,
1.11 x 10~° 1.23 x 1022
(€)? = = 3)

T Bx1082(1+ (¢"/€)?)  (L+(e/€)?)
Now, we use Egs. (35) and (36). Squaring these and taking their ratio gives

o J14("/€)? (027

B2 J1+ (/)2 (15?2
We solve thisto find €/ /e’ = 0.271. Substituting this result into (3) gives ¢’ = 1.07 x 10~ F/m.
Sincee” /e’ = 0.271, wethen find €” = 2.90 x 10~12 F/m. Finally, using these results in either (1) or
(2) wefind i = 2.28 x 10~% H/m. Summary: u = 2.28 x 10~H/m,
€ =1.07x 10011 F/m, and ¢” = 2.90 x 1012 F/m.

11.14. A certain nonmagnetic material has the material constantsef, = 2ande”’/e’ =4 x 104 aw = 1.5
Grad/s. Find the distance a uniform plane wave can propagate through the material before:

a) it is attenuated by 1 Np: First, ¢’ = (4 x 10%)(2)(8.854 x 10~1%) = 7.1 x 10~1° F/m. Then,

sincee” /e’ << 1, we use the approximate form for «, given by Eq. (51) (writtenin termsof €”):

4 1.5 x 10%)(7.1 x 10~15) 377
. @< fr_ (15 x 1071 x V37T _ 1 42 % 1072 Np/m

2 Ve 2 V2
The required distanceisnow z; = (1.42 x 1073)~1 = 706 m

b) the power level is reduced by one-half: The governing relation is e=2*?12 = 1/2, or 12 =
IN2/2a =1n2/2(1.42 x 10~ 3) = 244 m.

c) the phase shifts 360°: This distance is defined as one wavelength, where & = 27 /8
= (27¢) /(w@ — [27(3 x 108)]/[(L5 x 10%)+/7] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculatethewavel ength in centimetersand the attenuation in nepersper meter if thewaveispropagating
in anon-magnetic material for which

a) € = land ey = 0: Inanon-magnetic material, we would have:

ILOEOG/ e 2 12
o =w,| —2R 1+ <—,R) -1
2 €r
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11.15. (continued) and

MOGOE/ e 2 12
B=w|—X& 1+<—,R> +1
2 €r

With the given values of ¢}, and €, it is clear that B = w./moe0 = w/c, and so
r=2n/B =2nc/w =3 x 101°/1010 = 3cm. Itisaso clear that o = 0.

b) €j, = 1.04and e}, = 9.00 x 1074 Inthiscaseej/e), << 1,andso f = w,/ep/c = 2.13cm™L,
Thusi = 27/8 = 2.95cm. Then

L we’ [ weh Jioko o €f  2m x 1010 (9.00 x 1074

0=—_[/—

- — 9. - 8
2 Ve 2 /E;e 2c /6% 2 x 3 x 10 J1.04
=9.24 x 1072 Np/m

C) €, = 25and e = 7.2: Using the above formulas, we obtain

1/2

27 x 1010,/25 7.2\

g TX T Ve 1+(—> +1| =471cm™?
(3 x 1019)/2 25

andso A = 27/8 = 1.33cm. Then

1/2
27 x 1019,/2.5 7.2\?
a=—"""""Y""1 14+ (==) —1| =335Np/m

(3 x 10812 { (2.5> 335 Rp/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
oC R, where R isthe parallel resistance. Assume anidealized parallel plate capacitor having adielecric

characterized by o, €/, and wg. Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

N—"

1
S, R(ja)_C _ 1-jRoC _ 1—j0
R+(L) 1+ (RwC)? 1+ Q2

joC

Now R = d/(cA) and C = ¢’A/d, and 0 Q = we'/o = 1/1.t. Then the power factor is P.F =
cogtan(—0)] = 1/y/1+ 02,
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11.17. Letn = 250+ j30Q and jk = 0.2+ j2m~1 for auniform plane wave propagating in the a, direction
in a dielectric having some finite conductivity. If |[E;| = 400V/mat z = O, find:

a)

b)

P;.av @ z = 0and z = 60 cm: Assume x-polarization for the electric field. Then
1 1 , 400 :
P, av = éRe{Es X H;"} = ERe{4OOe_°‘Ze_”32ax X Fe_o’ze]ﬂzay}

1 1 1
— Z(400)%2e 2%Re{ —la, =80x10%202:Rel ___ = 14
54007 {n*} : e 250 — ;30

= 315¢72027 5. W/m?

Evaluating at z = 0, obtain P, ,,(z = 0) = 315a, W/m?,
andat z = 60 cm, P, 4, (z = 0.6) = 315202065 — 2483 W/m?.

the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. | will demonstrate: In the first method, we use Poynting's theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fieldsto read:

—V-P,ay=<J-E>

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting's theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

d
<J-E>=-V P4 = —d—315e—2<0~2>Z = (0.4)(315)e~2027 = 1267 9% W/m®
Z

At z = 60 cm, thisbecomes < J - E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J - E >= 0 < E2 >. Weuse

Jk = joype'J1—j"/e)

and
I S
€ VI-j€/e)
We take theratio,

k 4
JE_ jowe' |:1— j <6—/>] = jwe + we”
n €

Identifying o = we”, wefind

ik 02+ j2 s
=Re{— i =Re] ————— 1 =174x10°S/m
“ { 7 } {250+j30 % /

Now we find the dissipated power per volume:

1 2
0 <E?>=174x10"3 <§> (4ooe—0~22>
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m?3. One can show that consistency between the
two methods requires that
Re] Z1- 7
| 2«

This relation does not hold using the numbers as given in the problem statement and the value of o
found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r,r) if E; = 400e—12"ay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus H; = (400/no)e /*a, =
1.06e=/%*a, A/m. Inreal form, thefieldareE(x, t) = 400 cos(wt —2x)a, andH (x, 1) = 1.06 cos(wt —
2x)a.. Now P(r,1) = P(x,t) = E(x, 1) x H(x, t) = 424.4co(wt — 2x)a, W/m?,

b) Find P at+r = Oforr = (a,5, 10), wherea = 0,1,2, and 3: At ¢t = 0, we find from part «,
P(a,0) = 424.4cos%(2a), which leads to the values (in W/m?): 424.4ata =0, 73.5ata = 1,
181.3ata =2,and391.3ata = 3.

¢) Find P at the origin for T = 0, 0.2T, 0.4T, and 0.6T, where T is the oscillation period. At
the origin, we have P(0,t) = 424.4cos?(wt) = 424.4cos?(27¢/T). Using this, we obtain
the following values (in W/m?): 424.4att =0, 42.4a+=02T, 277.8a:=0.4T, and
277.8att = 0.67T.

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylindersisfilled with a perfect dielectric for which e = 10~°/4x F/mand g = 1. If Einthisregion
is (500/ p) cos(wt — 4z)a, VIm, find:

a) w, withthehelp of Maxwell’s equationsin cylindrical coordinates. We use the two curl equations,
beginning with V x E = —9B/d¢, wherein this case,

oE 2000 oB
VxE=—La,="—sn(wr—4 =_27
% 5y 0=, SRRy =
= 2000 2000
By = / —— sin(wt — 4z)dt = —— coS(wt —4z) T
P wp
Then

By 2000
T po (4r x 107 Nwp
Wenext use V x H = dD/d¢, where in this case

Hy cos(wt —4z) A/m

0H, 190(pH
VXH:——¢ap+— (,0 ¢)
0z o op

2k

where the second term on the right hand side becomes zero when substituting our Hy. So

oH 8000 .
VxH= ——¢ap = —Sln(a)t — 4Z)ap =

oD,
0z (4 x 10~ Hwp

a
ar "

And

8000

2
@ % 10 1a2s cos(wt — 4z) C/m

D —/ 8000 sin(wt — 4z)dt =
e (4 x 10~ NHwp @ et =
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11.19a. (continued) Finally, using the givene,

D, 8000

Ep = e (10-16)w2p

cos(wt —4z) V/m

This must be the same as the given field, so we require

8000 500
W=7 = w=4x 108rad/s

b) H(p, z, t): From part a, we have

2000

H(p, 2, 1) = —
P20 = G X 10 Tyap

4.0
cos(wt — 4z)ay = — cos(4 x 108 — 4z)a, A/m
Jol

¢) P(p, ¢, z): Thiswill be

500 4.0
P(p,¢,2) = E x H= == cos(4 x 108 — 4z)a, x — cos(4 x 10%r — 4z)ay
P P

2.0x 1073
= ;—2 cos?(4 x 108 — 4z)a, W/m?

d) the average power passing through every cross-section 8 < p < 20mm, 0 < ¢ < 2x. Using
the result of part ¢, we find P, = (1.0 x 10%)/p2%a, W/m?2. The power through the given

Cross-section is now

2 0201 13 2
f f OX 0 pdpd¢_2nx103ln(8o>:5.7kw

11.20. IfEy = (60/r) Sinf e=/%" gy VIm,andH; = (1/4rr)sind e~/2" a; AIminfreespace, find theaverage

power passing outward through the surface r = 10%,0 < § < 7/3,and0 < ¢ < 27.

15sin? 6

Tz ¥ WM

1
Puvg = éRe{Es X H;“} =
Then, the requested power will be

2t pm/3 155|n2 . /3 -
/ f S a,-a,rzsnededqs:ls/ sin®6 do
T 0

2
/3 25
_15<—§cose(sm 9+2)) ‘n :523.13W

Note that the radial distance at the surface, r = 10° m, makes no difference, since the power density

dimishesas 1/r2.
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11.21. The cylindrical shell, 1 cm < p < 1.2 cm, is composed of a conducting material for which o = 10°
S/m. The external and internal regions are non-conducting. Let Hy = 2000A/mat p = 1.2 cm.

a) Find H everywhere: Use Ampere'scircuital law, which states:
?gH -dL = 27p(2000) = 27(1.2 x 1072)(2000) = 487 A = I,;

Then in this case

I 48
J= a —1.09 x 1082, A/m?
Area ® = (144-1.00) x 104 x 1078 A/

With this result we again use Ampere's circuital law to find H everywhere within the shell as a
function of p (in meters):

2
54.5
Hy1(p) = 271p f01109 x 10% pdp dep = (104 2_1)A/m (.01 < p < .012)

Outside the shell, we would have

487
Hya(p) = 2mp 24/p A/m (p > .012)

Inside the shell (o < .01 m), Hy, = 0 since thereis no enclosed current.

b) Find E everywhere: We use

J 109 x 10°
E = ; = Taz = 1.09az V/m

which isvalid, presumeably, outside as well asinside the shell.
¢) Find P everywhere: Use

54.5
P=ExH=109a x —(10°p? — 1) a,
Jol

59.4
= -""(10%? - 1)a, W/m? (.01 < p < .012m)
P

Outside the shell,

24 26
=1.09a; x —a¢ =—-"a, W/m? (p >.012m)
P
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than 8. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

1 1

8 = =
Vrfuo o \/m(4 x 108) (4w x 10-7)(5.8 x 107)

=33x 10%m =3.3um

Now, using (70) with a unit length, we find

1 1
R' = =
" 2macs T 2m(2 x 10-3)(5.8 x 107)(3.3 x 10-6)

= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with adifferent conductor radius. Thus

2
Rous = Rin = =(0.42) = 0.12 ohms/m

¢) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, of R = R;, + R,y = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from atype of brass having a conductivity of 1.2 x 10" S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at afreguency of

a) dc: Inthiscasethe current density is uniform over the entire tube cross-section. We write:

R(dc) = L !

— =14x103Q
oA~ (1.2 x 1097 (.012 — .0092) X /m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is
§(20MHz) = [ f oo ] Y2 = [7(20 x 10%) (47 x 1077)(1.2 x 10)] ¥? =3.25 x 10> m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

L 1 1
R(20MHz) = —

— — —=41%x102Q
oA 2758 (1.2 x 107)(27(.01)(3.25 x 105 a /m

¢) 2GHz: Usingthesameformulaasin part b, wefind the skin depth at 2 GHztobe § = 3.25x 10~6
m. The resistance (using the other formula) is R(2GHz) = 4.1 x 1071 Q/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assumethat o = 1.2 x 10° SYm and g = 500 for the
stainless stedl interior, and find the depth of penetration:

1 1

— — =9.28 x 107®m = 9.28um
Vrfuo  /m(2.45 x 109) (4 x 10~7)(1.2 x 106)

8

b) Let £, = 50/ 0° V/m at the surface of the conductor, and plot a curve of the amplitude of E; vs.
the angle of E, asthe field propagates into the stainless steel: Since the conductivity is high, we
use (62) towritea = B8 = /mfuo = 1/8. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e %%~ /P7 = 50e /% ~/%/% = 50 exp(—z/9.28) exp(—j z/9.28)
N —

amplitude angle

where z isin microns. Therefore, the plot of amplitude versus angleis simply aplot of e versus
x, wherex = 7/9.28; the starting amplitude is 50 and the 1/¢ amplitude (at z = 9.28 um) is18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and avelocity of 3 x 10° m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

v 3x10°
=-=_"""=10"Hz=1GH
f A 3x104 z=2502
Next, for agood conductor,
A 1 Vib 4 A

= 1.1x 10° S/m

= o T Jatie T a2 T (9x 108109 (dr x 107)

11.26. The dimensions of a certain coaxial transmission line are ¢ = 0.8mm and & = 4mm. The outer
conductor thickness is 0.6mm, and all conductorshave o = 1.6 x 10’ S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

1 1

5= -
VEfuo  \/7(2.4 x 108)(4r x 10-7)(1.6 x 107)

= 2.57 x 107®m = 2.57um

Then, using (70) with a unit length, we find

1 1
Rin = =
2racd  2m(0.8 x 10-3)(1.6 x 107)(2.57 x 10-5)

= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

0.8
Rour = %R,-n = = (4.84) = 0.97 ohms/m

The net resistance per length isthen thesum, R = R;,, + R,,; = 5.81 ohms/m.
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11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax isair-filled. From those sections, we find (in free space)

2meo _ 2m(8.854 x 1012

=3.46 x 1071 F/m

~Inb/a) In(4/.8)
—7
= Mo In(b/a) = u In(4/.8) = 3.22 x 10~" H/m
2 2

c) Findo and B if @« + jB = /jowC(R + jwL): Taking real and imaginary parts of the given
expression, we find

- —1/2
LC R \?
(x:Re{\/ja)C(R—i—ja)L)}:wﬁ 1+(a)_L> -1
and B “1/2
VL R \?
p=m{Viwe®+ jaD | = “2E | 1w () +1

These can befound by writingouta = Re{/joC(R + jwL)} = (1/2)/jwC(R + joL)+c.c.,
wherec.c denotesthecomplex conjugate. Theresultissquared, termscollected, and the squareroot
taken. Now, usingthevaluesof R, C, and L foundin partsa and b, wefinda = 3.0 x 1072 Np/m
and 8 = 50.3rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having w = 4 x 1019 rad/s:
a) aTef /aprass. From the appendix we find €” /¢’ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, €j, = 2.1. For brass, wefindo = 1.5 x 107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations.

anm €\ (1 - 1/ a)\/T
= — — = — — € = — — — ./ €
“ 2V € € 2 OV i 2\e¢ ) ¢ VR

1 VA
B = wy/ e [14——(6—/)] ia)«/,ue/zg €
€ c

8
For brass (good conductor) we have

1
o =B = /1f1uopras = \/n <2—) (4 x 1010) (47 x 10-7)(1.5 x 107) = 6.14 x 10° m~!
T

Now
are  Y2(€"/€) (@/0)\J€r  (1/2)(.0003)(4 x 1019/3 x 108)y/2.1 s
_ _ . =47 x10
Uprass q/T[f[,LO'brass 6.14 x 10
b)
At _ (21/Pre) _ Porass _ v/ iobas _ 3x 109)(614x100) _ .

Mrass  (27/Pprass)  Pref (4 x 1010)/2.1

/
W4/ €R Tef
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11.27. (continued)

<)

vt (@/Bret) _ Porass
Ubrass (w/ Borass) Bret

— 3.2 x 10° asbefore

11.28. A uniform plane wave in free space has electric field given by E; = 10e—/#*a, + 15¢~/F*a, V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave haslinear polarization, with the field vector

inthe yz plane at angle ¢ = tan—1(10/15) = 33.7° to the y axis.

b) Find H,: With propagation in forward x, we would have

—10

15
s = 377¢ e Fra, + ——e7Pra, A/m = —26.5¢7/F*a, + 39.8¢/F*a, mA/m

377

c) determine the average power density in the wavein W/m?: Use

1
Pavg = 5Re{Eq x H

<10)2al (15)2
b= 2[377 3T

ax] = 0.43a, W/m? or Py, = 0.43W/m?

11.29. Consider aleft-circularly polarized wave in free space that propagates in the forward z direction. The
eectric field is given by the appropriate form of Eq. (80).
a) Determine the magnetic field phasor, H;:
We begin, using (80), with E; = Eg(a, + jay)e‘fﬂz. We find the two components of H;
separately, using the two components of E;. Specifically, the x component of E; is associated
with a y component of Hy, and the y component of E; is associated with anegative x component
of H,. Theresultis
_ 50 _ —jBz
H; - (ay ]ax)e

b) Determine an expression for the average power density in thewavein W/m? by direct application
of Eq. (57): We have

1 1 : E .
Pz,avg = ERe(Es X H;() = ERe <E0(ax + jay)e_JﬂZ X n—g(ay — jax)e_HﬂZ)

g2
—%a, W/m? (assuming Eg isreal)
0
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11.30. The€electric field of auniform plane wave in free spaceis given by E; = 10(a, + jay)e %%,
a) Determinethe frequency, f: Use

_ Be (5B 10%)

= = 1.2 GHz
2 27

f

b) Findthe magnetic field phasor, H,: With the Poynting vector in the positive x direction, apositive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

— E) —j25x

o

H, [a. — jay]e

¢) Describe the polarization of the wave: Thisis most clearly seen by first converting the given field
to real instantaneous form:

E(x,1) = Re{Esej“”} = 10[cos(wt — 25x)ay — sin(wt — 25x)a, |

At x = 0, this becomes,
E(0, 1) = 10 [cos(wt)ay — sin(wt)a, |

With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, isinput to alossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (egy)
differs from that seen by waves polarized along x (egy). Suppose ez, = 2.15, g, = 2.10, and the
waveelectricfield at input ispolarized at 45° tothe positivex and y axes. Assumefree spacewavelength
A.

a) Determinethe shortest length of the materia such that the wave as it emerges from the output end
iscircularly polarized: Withtheinput field at 45°, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the componentsis /2. Our
requirement over length L isthus 8, L — By,L = /2, or

T e

L = =
2(Bx — By) 2w ( /€rx — JVERY)

With the given values, we find,

58.3 A
_ O8I _ po3t _146n

L
2w 4 —
b) Will the output wave beright- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. Thefield can
thus be written asE = Eg(a, — ja,), whichisleft circular polarization.
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11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of r radians develops between the two components. At the input, we can write the field as
Es(0) = Eo(a, + a,). After propagating through length L, we would have,

E,(L) = Eole /F:la, + e~ ifrla)] = Ege P [a, + i BrPolq]

where (By — By)L = —x (since By > By), and 0 E; (L) = Ege /P+L[a, — a,]. With the reversal of
the y component, the wave polarization is rotated by 90°, but is still linear polarization.

11.33. Givenawavefor which E; = 15e~/#7a, + 18¢~/#<¢/%a, V/m, propagating in amedium characterized
by complex intrinsic impedance, 7.

a) Find Hy: With the wave propagating in the forward z direction, we find:

1 . _
Hy = = [—18ef¢ax + 15ay] eiB AJm
n

b) Determine the average power density in W/m?: Wefind

P avg = %Re{ES x H}} = }Re

2 2
- {(15) +(18)

1
g . }:275Re{—} W/m?
n n

n*

11.34. Given the general elliptically-polarized wave as per Eq. (73):
E; = [Ecoay + Eyoejd’ay]e_jﬂZ

a) Show, using methods similar to those of Example 11.7, that alinearly polarized wave resultswhen
superimposing the given field and a phase-shifted field of the form:

E, =[Er 02y + Eyoe_j"bay]e_j’gzej‘3
where § is a constant: Adding the two fields gives

Egror = [Exo (1 - ej‘s) ar + Eyo (ef¢’ - e_j¢ej8) ay] e Pz

= | E.e/%/? (e—./a/z + e.;é/z) a, + Eypel®? (e—ja/zem 4 e—jasejs/z) a, | e /P

2c0s(8/2) 2cos(¢p—68/2)

This simplifiesto Ey ;o = 2[E0C0S(8/2)a + EyoCos(¢ — 8/2)ay ] e/%/2¢=/P%, which is lin-
early polarized.

b) Find § in terms of ¢ such that the resultant wave is polarized along x: By inspecting the part a
result, we achieve azero y component when 2¢ — § = r (or odd multiples of ).
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CHAPTER 12

12.1. A uniform planewaveinair, E+ = E+0cos(1010t—,8z) V/m, isnormally-incident on acopper surface

12.2.

at z = 0. What percentage of the incident power density is transmitted into the copper? We need to
find the reflection coefficient. The intrinsic impedance of copper (a good conductor) is

1019(47 x 107) )
\/ =1+ ),/ —( J)\/ 2G8 107, = (L0104

Note that the accuracy here is questionable, since we know the conductivity to only two significant
figures. We nevertheless proceed: Using ng = 376.7288 ohms, we write

Ne = M0 _ .0104 — 376.7288 + j.0104
Ne+no 0104+ 376.7288+ j.0104

I'=

—.9999 + j.0001

Now |T'|2 = .9999, and so the transmitted power fraction is 1 — |I'|2 = .0001, or about 0.01% is
transmitted.

Theplaney = Odefinestheboundary between two different dielectrics. Fory < 0, €%, = 1, u1 = o,
and e}, = 0;andfor y > 0, €, =5, u2 = o, and €j, = 0. Let £} = 150cos(wr — 8y) V/m, and
find

a) w Havep=8=w/c = w =8 =24x10°sec” L.

b) Hf: With E inthez direction, and propagation in theforward y direction, H will lieinthe positive
x direction, and its amplitude will be H, = E /ng inregion 1.
ThusH} = (150/n0) cos(wt — 8y)a, = 0.40cos(2.4 x 10% — 8y)a, A/m.

c) Hi: First,
- +_no/\/§—no/1 1- \/_ +
E;=TE} = E} = —0.38E}
no/v5+mno/1  1++5
Then 0.38(150)
H =+(. 38/;70)EZl = T cos(wt + 8y)

Sofinally, H_; = 0.15c0s(2.4 x 10% + 8y)a, A/m.

12.3. A uniform planewavein region lis normally inci dent on the planar boundary separating regions 1 and

2. If €] = ) = 0, while €y = p3; and eh, = 13, find the ratio €, /€4 if 20% of the energy in
the incident wave is reflected at the boundary. There are two possible answers. First, since |T'|2 = .20,
and since both permittivities and permeabilitiesarereal, I' = +0.447. we then set up

wo—m oy (R2/€hg) = 10y (er1/€y)

I' =+0.447 = =
12H I o [(ira/elg) + oy (k1 €Ry)

B \/(MRZ/Msl;z) - \/(MRl//Lil) kL — o
\/(ILRZ/,U«:;;Z) + \/(HRl/lLs;gl) MR1+ UR2
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12.3. (continued) Therefore

17 0.447 / 3
pr2 _ 1F — (0.382,2.62) = 6ﬂ:(@) = (0.056, 17.9)
wr1 1£0.447 €r1 MR1 -

12.4. The magnetic field intensity in aregion wheree” = Oisgiven asH = 5coswr cosz a, A/Im, where
w = 5 Grad/sand 8 = 30 rad/m. If the amplitude of the associated electric field intensity is 2kV/m,
find

@ w and ¢’ for the medium: In phasor form, the magnetic field is Hy, = Hoe /#* + Hpe™F? =
5cosfz = Ho = 2.5. The electric field will be x directed, and is E,;, = n(2.5)e /F* —
n(2.5)etiP? = (2j)n(2.5) sin Bz. Giventheelectricfield amplitudeof 2kV/m, wewrite2x 10° =

5n, or n = 4002. Now n = 400 = no,/ i, /€, and we also have B = 30 = (w/c),/LreR. We
solve these two equations simultaneously for ug and €} to find g = 1.91 and €}, = 1.70.
Therefore u = 1.91 x 47 x 1077 = 2.40 uH/m and ¢’ = 1.70 x 8.854 x 1012 = 15.1 pF/m.

b) E: From part a, electric field in phasor form is E,; = j2sin Bz kV/m, and so, in real form:
E(z,t) = Re(E,se/?)a, = 2sin Bz Sinwt a, kV/m with  and B as given.

12.5. Theregion z < Oischaracterized by €}, = ugr = 1and e, = 0. Thetotal E field hereis given as the
sum of the two uniform plane waves, E; = 150e /1% a, + (50/20°)e/1% a, V/m.
a) What is the operating frequency? In free space, 8 = ko = 10 = w/c = w/3 x 108. Thus,
w=3x10%s1 or f = w/27m = 4.7 x 108 Hz

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected

wave: Use e
E,  50e/ 1 0 -
P= = 2¢ 2,02 _031+ j011= 110
Eme 150 3 n+ 0
14T 1+0.31+0.11
o (21 ) = 377 — 691+ j177 Q
7 ’7°<1—r) (1—0.31—]'0.31) S S

c) At what value of z (—10cm < z < 0) isthe total electric field intensity a maximum amplitude?
We found the phase of the reflection coefficient to be ¢ = 20° = .349rad, and we use
—¢ —.349

max = =—=-0017m=-17cm
¢ 28~ 20 —===

12.6. Region 1, z < 0, and region 2, z > O, are described by the following parameters: €7 = 100 pF/m,
pu1=25uH/m, €] =0, e, = 200 pF/m, 2 = 50 uH/m, and €5 /¢5 = 0.5.
If Ef = 600e=%% cos(5 x 107 — B1z)a, V/m, find:
@) a1: From Eq. (35), Chapter 11, we note that since ] = 0, it follows that o1 = 0.
b) B1: 1 = wy/p1€] = (5 x 10%9),/(25 x 10-6)(100 x 10-12) = 2.50 x 10° rad/m.

0) Ej; = 600¢ /250104, v/ /m,

d) E,;: Tofindthis, we need to evaluate the refl ection coefficient, which means that we first need the
two intrinsic impedances. First, n1 = /j11/€; = /(25 x 10-6)/(100 x 10-12) = 500.

201



12.6d) (continued) Next, using Eq. (39), Chapter 11,

12 1 50x 106 1 .
_ K2 — = 460 + j109
12 €5 /11— j(ey/€h) 2x 10710 y1-j05 !
Then
- 460 4 j109 — 500 104°
polezm _ 40+ = —2.83x 1072 + j1.16 x 107! = 0.120¢/1%*

n2+n1 460+ j109 + 500

Now we multiply Ejl by I" and reverse the propagation direction to obtain

E;p = 71.8¢/104 ¢/25:10% v /m

e) E/,: Thiswave will experience lossin region 2, along with a different phase constant. We need
to evaluate oz and B». First, using Eq. (35), Chapter 11,

1/2
ILZG/ el 2
o) =W £e2 1+ (—3) -1
2 €

6 —12 1/2
= (5x 1010)\/(50 < 10 )(2200 x 1077 [\/1 t (0572 — 1] "% _ 1,21 x 10° Np/m

Then, using Eq. (36), Chapter 11,

1/2
/ 7N 2
B2 = w/’“‘zTez |:\/l+ C—Z) + 1} — 5.15 x 10° rad/m
2

Then, the transmission coefficient will be

1=14T=1-283x10"2+ j1.16 x 101 = 0.972¢/"
The complex amplitude of Ejz is then found by multiplying the amplitude of Ejl by z. Thefield
in region 2 is then constructed by using the resulting amplitude, along with the attenuation and
phase constants that are appropriate for region 2. Theresult is

E+2 — 587, 121x10% ,j7° ,—j5.15x10%; V/m
N

12.7. The semi-infiniteregionsz < 0Oandz > 1 marefreespace. For0 < z < 1m, e}e =4, ug =1,

and e = 0. A uniform plane wave with w = 4 x 108 rad/sistravelling in the a, direction toward the
interfaceat z = 0.

a) Find the standing wave ratio in each of the three regions. First we find the phase constant in the
middle region,
O\[€R  2(4 x 108)

P2 = c  3x108

= 2.67rad/m
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12.7a. (continued) Then, withthemiddlelayerthicknessof 1 m, Sod = 2.67 rad. Also, theintrinsicimpedance

12.8.

12.9.

of the middle layer isn2 = no/,/€x = no/2. We now find the input impedance:

2

_— [nocos(ﬁzd)—i-jnzsin(ﬁzd)] 377 [2cos(2.67)+jsin(2.67)

— = —— ] =231+ j141
n2 CoS(Bad) + jno SiN(Bad) C0S(2.67) + j29In(2.67)
Now, at the first interface,

Nin —no0 _ 231+ j141—-377
Nin +n0 231+ j1414+377

o = —.176 + j.273 = .325/123°

The standing wave ratio measured in region 1 is thus

1+ | 1+ 0.325
1+ 1+ _ 196

LT M 1-03% =

In region 2 the standing wave ratio is found by considering the reflection coefficient for wavesincident
from region 2 on the second interface:

_Mmo—m/2 _1-1/2 1

r — _ =
B o+no/2 1412 3
Then
1+1/3
§2 = =2
1-1/3 -~

Finally, s3 = 1, since no reflected waves exist in region 3.

b) Find the location of the maximum |E| for z < O that is nearest to z = 0. We note that the phase
of ' is¢ = 123° = 2.15rad. Thus

—¢ 215

Zmax = — = =—.81m
28 24/3) —

A wave starts at point a, propagates 100m through a lossy dielectric for which o = 0.5 Np/m, reflects
at normal incidence at a boundary at which I' = 0.3 + 0.4, and then returns to point a. Calculate the
ratio of thefinal power to the incident power after thisround trip: Final power, Py, and incident power,
P;, are related through

P
Pp = Pe LD Re 2L = 7{” — |0.3 4 j0.42.7209100 _ 35, 10-881)
Try measuring that.

Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (u = g, €’ = 0). A uniform plane
wave traveling in the a, direction has aradian frequency of 3 x 10%° rad/s. Its wavelengths in the two
regionsare A1 = 5cmand A2 = 3 cm. What percentage of the energy incident on the boundary is

a) reflected; We first note that
27c\ 2 27c)\ 2
ri=—] and e =—
€R1 (Mw) €R2 <A2w)
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12.9a. (continued) Therefore €y, /€, = (A2/11)2. Then with i = uo in both regions, we find

p_m—m _ noy/1/€ga = ’70\/1/le _ \/6321/6}32_ 1 _ (2/a) -1
2T g 1/6532""70\/1/6;31 \/eﬁel/ffez"‘l (Ga/r) +1
_)\.2_)\.1_3_5_ 1
2+ 345 4

The fraction of the incident energy that is reflected isthen |I'|2 = 1/16 = 6.25 x 102,

b) transmitted? We use part ¢ and find the transmitted fraction to be
1—|T')?2 = 15/16 = 0.938.

¢) What isthe standing wave ratio in region 1? Use

_1+r 1+1/4
S 1—-r 1-1/4

12.10. InFig. 12.1, let region 2 be free space, while ug1 = 1, €, = 0, and €, isunknown. Find e, if
a) theamplitude of E] isone-half that of Ef: Since region 2 is free space, the reflection coefficient

IS
ETl  mo—m M0 M0/\/€rr  yer—1 1 /
YT T orm o =2 7 m=2
1 770+770/ €Rr1 €R1+1

b) Pi,,, isone-halfof P’ : Thistime

2
/ JR—
|F|2 — —VeRll — }

€p1+1 2

/

= €R1=3—4

C) |E1lmin isone-haf |E1|pq: Use

|El|max — = 1+ |F| _
|E1lmin 1T

m
=~
[y

-1
= — = E;elzé
1+1

1N

Il
!
|
wl -
m
o

12.11. A 150 MHz uniform planewavein normally-incident fromair onto amaterial whoseintrinsicimpedance
is unknown. Measurements yield a standing wave ratio of 3 and the appearance of an electric field
minimum at 0.3 wavelengths in front of the interface. Determine the impedance of the unknown
material: First, the field minimum is used to find the phase of the reflection coefficient, where

1
Zmin:_%(¢+ﬂ)=—0.3)n = (]5:027[

where 8 = 27 /) has been used. Next,




12.11. (continued) Sowe now have
I = 0.5/02r — 10
Nu + Mo
We solve for 5, to find
ny = no(L.70+ j1.33) = 641 + ;501 Q2

12.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For
seawater, o =4 S/m, and ¢, = 78.
a) Determine the fractions of the incident power that are reflected and transmitted: First we find the
loss tangent:
o 4
we’  2m(50 x 10°)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor
at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic impedance is
ns = /mfu/o L+ j), and the reflection coefficient becomes

_ ATIT A+ ) = o
VETIT L+ ) + 110

184

where /7 fiujo = /7 (50 x 108) (4 x 10-7)/4 = 7.0. The fraction of the power reflected is

P pp = WEIRG - nol2 +7fujo  [7.0— 3772 +49.0

P, WA fnjo + o2+ rfujo  [7.04+ 37712 +49.0 =093

The transmitted fraction is then

P
F’:l_|r|2:1—0.93=0._07

i

b) Qualitatively, how will these answers change (if at all) as the frequency is increased? Within
the limits of our good conductor approximation (loss tangent greater than about ten), the reflected
power fraction, using theformuladerived in part a, isfound to decrease with increasing frequency.
The transmitted power fraction thus increases.

12.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab of plex-
iglas (e, = 3.45, ¢ = 0). Calculate the fractions of the incident power that are reflected and trans-
mitted. Also, describe the polarizations of the reflected and transmitted waves. First, the impedance of
the plexiglaswill ben = ng/+/3.45 = 2032. Then

203 — 377
==~ _030
203 + 377

The reflected power fraction is thus [I'|2 = 0.09. The total eectric field in the plane of the interface
must rotate in the same direction as the incident field, in order to continually satisfy the boundary
condition of tangential electric field continuity across the interface. Therefore, the reflected wave will
haveto beleft circularly polarized in order to make this happen. The transmitted power fraction is now

1—|T'|? = 0.91. The transmitted field will be right circularly polarized (as the incident field) for the
same reasons.
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12.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect conductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume positive
z travel for the incident electric field. Then, with reflection coefficient, I' = —1, the incident and
reflected fields will add to give the total field:

Eior = Ei + Er = Eo(ac + jay)e /P — Eo(a, + jay)et/F*

=Ep (e_j’sz — ejﬁz) a, +Jj (e_jﬂZ — ejﬁz) a, | = 2Epsin(Bz) [ay — jax]
~— —_—
—2jsin(Bz) —2jsin(Bz)

b) Determine thereal instantaneous form of the result of part a:

E(z,1) = Re{Ew,ef“”} = 2Epsin(Bz) [cos(wt)ay + sin(wt)ax]

¢) Describe the wave that is formed: This is a standing wave exhibiting circular polarization in
time. At each location along the 7 axis, the field vector rotates clockwise in the xy plane, and has
amplitude (constant with time) given by 2Eqsin(8z).

12.15. Consider theseregionsinwhiche” = 0: region 1, z < 0, u1 = 4uH/m and €; = 10 pF/m; region 2,
O<z<b6em, ux=2uH/m,e,=25pF/m;region3,z > 6cm, u3 = pu1 and eg = €.
a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto the
boundary at z = 0 will have no reflection? This frequency gives the condition 8>d = 7, where
d = 6.¢cm, and B2 = w,/ 26, Therefore

1
Bod =1 = w=

T
- = f= = 1.2 GHz
(.06) /1126 0.12/(2 x 10-6)(25 x 10-12) —

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
B2 = (2r x 5 x 107),/(2 x 10-6)(25 x 10-12) = 2.22 rad/m. Thus B2d = 2.22(.06) = 0.133.
The intrinsic impedance of regions 1 and 3isn; = n3 = /(4 x 10-6)/(10-11) = 632Q. The
input impedance at the first interface is now

pin = 2 3[632cos(.133) + j283sin(.133)
" 283 c0s(.133) + j632sin(.133)
The reflection coefficient is now

Nin =11 _ 589 — ]:138— 632 12/ 17

nin +m1 589 — j138 + 632

The standing wave ratio is now

] — 589 — j138 = 605/ — .23

I' =

1 .
RS
1—|1 1-.12 ==

12.16. A uniform plane wave in air is normally-incident onto alossless dielectric plate of thickness A/8, and
of intrinsic impedance n = 260 2. Determine the standing wave ratio in front of the plate. Also find
the fraction of the incident power that is transmitted to the other side of the plate: With the athickness
of 1/8, we have Bd = m/4, and so cos(B8d) = sin(Bd) = 1+/2. The input impedance thus becomes

377 + j260

=60 | 2L/
in [26o+ 377

]:243—]'929
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12.16. (continued)
The reflection coefficient is then

(243 j92) - 377
T (243- j92) + 377

—0.19 — j0.18 = 0.26/ — 2.4rad

Therefore
_1+.26

= — 2: — 2:
T og =L7and 1-|P?=1-(26%=09

N

12.17. Repeat Problem 12.16 for the casesin which the frequency is
a) doubled: If thisistrue, thend = /4, andthusn;, = (260)2/377 = 179. Thereflection coefficient

becomes
179 — 377 _ 1+.36_

=————=-036 = s=
179 + 377 g
Thenl— |12 =1— (.36)2 = 0.87.

=21
1-36

b) quadrupled: Now, d = A/2, and so we have a half-wave section surrounded by air. Transmission
will betotal, andsos = 1and1— |T|2 = 1.

12.18. InFig. 12.6, let n1 = n3 = 37722, and n2 = 0.4n1. A uniform plane wave is normally incident from
the left, as shown. Plot a curve of the standing waveratio, s, in the region to the | eft:
a) asafunction of [ if f = 2.5GHz: With n1 = n3 = no and with n2 = 0.4no, Eq. (41) becomes

04 cos(Bl) + jO.4sin(Bl) 0.4cos(Bl) — jsin(Bl)
Nin = 710 [0.4cos(ﬂl) ¥ jsin(/Sl)] x [0.4cos(ﬂl) - jsin(ﬁl)]
B 1— j1.05sin(281)
=0 [cosz(ﬂl) n 6.255in2(ﬂl)]

ThenT = (n;, — no)/(Min + no), from which we find

| = T = {[1 — co(Bl) — 6.255n%(BD)]% + (1.05)Zsin2(2[31):|1/2

[1+ co?(Bl) + 6.25sin%(B1)]° + (1.05)2 sin?(2p1)

Thens = (1 +|I"|)/(1 — |T']). Now for auniform plane wave, 8 = w./ite = nw/c. Given that
n2 = 0.4no = no/n, wefindn = 2.5 (assuming i = o). Thus, at 2.5 GHz,

2.5)(27)(2.5 x 10° _ .
pr ="y = 2DE@OECSXA0), ) 051 (inm) = 0.12951 (f in cm)
c 3% 10°

Using thisin the expression for |T°|, and calculating s asafunction of 7 in cm leadsto the first plot
shown on the next page.

b) asafunction of frequency if I = 2cm. In this case we use

_(25)(27)(0.02)

— -10 - _ _
Bl = 3% 108 f=104x10"" f (finHz) =0.104 f (f in GHz)

Using thisinthe expression for |T"|, and calculating s asafunction of f in GHz leadsto the second
plot shown on the next page. MathCad was used in both cases.
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12.18 (continued) Plotsfor partsa and b

Problem 12.18a Problem 12.18b
3 T T T T 8 T T T
ol ot - 7 — -
8 [}
g B=1
& 2
L o
3 5
3 =
£ 2
b= =]
5 8
Lz 7
0 i | ] i 0 } | i
0 10 20 30 40 50 0 20 40 60
Length (cm) : Frequency (GHz)

12.19. You are given four slabs of lossless dielectric, al with the same intrinsic impedance, », known to
be different from that of free space. The thickness of each slab is A /4, where A is the wavelength as
measured intheslab material. Thedabsareto bepositioned parallel to oneanother, and the combination
liesin the path of a uniform plane wave, normally-incident. The slabs are to be arranged such that the
air spaces between them are either zero, one-quarter wavelength, or one-half wavelength in thickness.
Specify an arrangement of slabs and air spaces such that

a) the waveistotaly transmitted through the stack: In this case, we look for a combination of half-
wavesections. Lettheinter-dabdistancesbeds, d», andds (fromlefttoright). Two possibilitiesare
i.) d1 = d> = d3 = 0, thuscreating asingle section of thickness A, orii.) dy = d3 =0, d» = 1/2,
thus yielding two half-wave sections separated by a half-wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here is to make
d1 = do = d3 = A /4. Thusevery thicknessisone-quarter wavelength. Theimpedancestransform

asfollows: First, theinput impedance at the front surface of the last slab (dlab 4) isn;,.1 = n%/no.
We transform this back to the back surface of slab 3, moving through a distance of A/4 in free
SPace: nin,2 = 13/nin,1 = n3/n> Wenext transform thisimpedance to the front surface of dab 3,
producing nin.3 = n?/nin,2 = n*/n3. We continue in this manner until reaching the front surface
of slab 1, where we find 7, 7 = 18/ng. Assuming < no, theratio n” /n~* becomes smaller as
n increases (as the number of slabsincreases). The reflection coefficient for wavesincident on the
front slab thus gets close to unity, and approaches 1 as the number of slabs approaches infinity.

12.20. The 50MHz plane wave of Problem 12.12 is incident onto the ocean surface at an angle to the normal
of 60°. Determine the fractions of the incident power that are reflected and transmitted for
a) spolarization: To review Problem 12, we first we find the loss tangent:

4
o _ =184
we'  2m(50 x 108)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor at
50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with © = o, the intrinsic
impedanceisn, = o/mfu/o(1+ j) =7.0(1+ j).

208



12.20a. (continued)
Next we need the angle of refraction, which means that we need to know the refractive index of
seawater at 50MHz. For auniform plane wave in a good conductor, the phase constant is

ﬂzwivnf,uo— = Nfgeq =C ﬂ:268
c 4r f

Then, using Snell’s law, the angle of refraction is found:

Nsea

ni

sinfy =

Sinfy = 26.8sN(60°) = 6, = 1.9°

Thisangle is small enough so that cos@, = 1. Therefore, for s polarization,

o—ns1  7.0(1+ j) — 377/ cos60°
o M2 — st _ 70+ ) / — —0.98 + j0.018 = 0.98/179°

I', = = =
ST 2+ m1 7.0(L+ j) + 377/ cos60°

The fraction of the power reflected is now |Ty|? = 0.96. The fraction transmitted is then 0.04.
b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for p polar-
izationis
ro= np2 —np1 _ 1.0(1+ j) —377cos60°
P 2+ mp 7.0(1+ j) + 377cos60°

= —0.93 + j0.069 = 0.93/176°

The fraction of the power reflected isnow |I"), |2 = 0.86. Thefraction transmitted is then 0.14.

12.21. A right-circularly polarized plane wave in air is incident at Brewster's angle onto a semi-infinite slab
of plexiglas (e, = 3.45, €z =0, u = o).

a) Determine the fractions of the incident power that are reflected and transmitted: In plexiglas,
Brewster's angle is 05 = 61 = tan (e} /€py) = tan~1(+/3.45) = 61.7°. Then the angle of
refraction is 6> = 90° — 0p (see Example 12.9), or 6, = 28.3°. With incidence at Brewster’s
angle, al p-polarized power will be transmitted — only s-polarized power will bereflected. This
is found through

m2s —n1s _ -614no — 2.11ng

$T m2s +m1s  -61dng + 2.11ng

where n1, = n15ec61 = 1o sec(61.7°) = 2.11x,

and n2;, = n2seclr = (no/+/3.45) sec(28.3°) = 0.614n9. Now, the reflected power fraction
is|I'|2 = (—.549)2 = .302. Since the wave is circularly-polarized, the s-polarized component
represents one-half the total incident wave power, and so the fraction of the total power that is
reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that is transmitted is then
the remainder, or 85%.

I = —0.549

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized com-
ponent is transmitted, the reflected wave will be entirely s-polarized (linear). The transmitted
wave, while having all the incident p-polarized power, will have areduced s-component, and so
this wave will be right-elliptically polarized.
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12.22.

12.23.

12.24.

12.25.

A dielectric waveguide is shown in Fig. 12.18 with refractive indices as labeled. Incident light enters
the guide at angle ¢ from the front surface normal as shown. Once inside, the light totally reflects
a the upper n1 — n» interface, where n1 > n». All subsequent reflections from the upper an lower
boundaries will be total as well, and so the light is confined to the guide. Express, in terms of n; and
n2, the maximum value of ¢ such that total confinement will occur, with ng = 1. The quantity sin¢ is
known as the numerical aperture of the guide.

From the illustration we see that ¢ maximizes when 61 is at its minimum value. This minimum will
be the critical angle for the ny — n2 interface, wheresinf, = sin61 = na/nj. Let the refracted angle
to the right of the vertical interface (not shown) be ¢, where ngsings = n1 Sin¢2. Then we see that
¢2 + 61 = 90°, and so Sinf; = cos¢2. Now, the numerical aperture becomes

. ny . .
SING1max = n—OS|n¢2 =n1C0801 =niy/1— sm291 = nl\/l— (np/n1)? = \/n% — n%

Finaly, ¢1nax = Sin~t ( n% — n%) isthe numerical aperture angle.

Suppose that ¢1 in Fig. 12.18 is Brewster’s angle, and that 6; is the critical angle. Find ng in terms of
n1 and no: With the incoming ray at Brewster's angle, the refracted angle of this ray (measured from
the inside normal to the front surface) will be 90° — ¢1. Therefore, ¢1 = 61, and thussing; = sin6;.
Thus

SN¢g1 = ——— =9NnbH; = = no = (n1/n2)y/n7 —n5

/.2 2 ni
no—l-n1

Alternatively, we could have used the result of Problem 12.22, in which it was found that sin¢; =

(1/n0),/n? — n3, which we then set equal to sinf; = n/n1 to get the same result.

A Brewster prismis designed to pass p-polarized light without any reflective loss. The prism of Fig.
12.19 ismade of glass (n = 1.45), and isin air. Considering the light path shown, determine the apex
angle, «: With entrance and exit rays at Brewster's angle (to eliminate reflective |0ss), the interior ray
must be horizontal, or parallel to the bottom surface of the prism. From the geometry, the angle between
the interior ray and the normal to the prism surfaces that it intersectsis «/2. Since this angle is also
Brewster’s angle, we may write:

azzsin—1<

1 1
—2sn 1 —— ) =121rad = 69.2°
Vit n2) (,/1+ (1.45)2> -

In the Brewster prism of Fig. 12.19, determine for s-polarized light the fraction of the incident power
that is transmitted through the prism: Weuse I'y = (52 — n51)/(ns2 + ns1), Where

12 n2 n %
Ng2 = = = —=V1+n
Y cosp2)  n/V1t+nZ  n?

and

n n J1gn2
Ns1 = = =novl+n
cos(0p1)  1/v/1+ n2
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12.25.

12.26.

12.27.

(continued) Thus, at thefirstinterface, I' = (1—n?)/(14n?). Atthe second interface, I" will be equal
but of opposite sign to the above value. The power transmission coefficient through each interface is
— |T"|2, so that for both interfaces, we have, with n = 1.45:

2
P 2 2_1\?
s :<1—|F|2> —l1-(2==) | =076
Pine n2+1

Show how asingle block of glass can be used to turn a p-polarized beam of iight through 180°, with the
light suffering, in principle, zero reflective loss. The light isincident from air, and the returning beam
(alsoin air) may be displaced sideways from the incident beam. Specify al pertinent angles and use
n = 1.45for glass. More than one design is possible here.

The prism below isdesigned such that light enters at Brewster’s angle, and onceinside, isturned around
using total reflection. Using the result of Example 12.9, we find that with glass, 65 = 55.4°, which, by
the geometry, is also the incident angle for total reflection at the back of the prism. For this to work,
the Brewster angle must be greater than or equal to the critical angle. Thisisin fact the case, since
0. = sin"Y(na/n1) = sin~1(1/1.45) = 43.6°.

Using Eg. (59) in Chapter 11 as a starting point, determine the ratio of the group and phase velocities
of an electromagnetic wave in a good conductor. Assume conductivity does not vary with frequency:
In agood conductor:

B=Jafuo = M7 ﬁ:%[w]—l/zﬂ

2 dw 2 2
Thus
< ,8) Za) and 1) 1) 2w
_— et = 1) = = = —
d no & P B Jouo /2 no
Therefore vg /v, =
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12.28. Over acertain frequency range, the refractive index of a certain material varies approximately linearly
with frequency: n(w) = n, + np(w — w,), wheren,, np, and w,, are constants. Using 8 = nw/c:
a) determine the group velocity as afunction (or perhaps not afunction) of frequency:
vy = (df/dw), where

do dow

g d |nqw n np(w — wg)w
c c

} = %[”a + np (20 — wq)]

s0 that
vg(@) = ¢[ng +np 2w — w,)] ™t

b) determine the group dispersion parameter, 3>:

d? d 1
= d_a)i v doc [na + np (20 — w4)] oy 2np/c

B2

¢) Discusstheimplicationsof theseresults, if any, on pulsebroadening: The point of thisproblemwas
to show that higher order terms (involving d®8/d® and higher) in the Taylor series expansion,
Eqg. (89), do not exist if the refractive index varies linearly with w. These higher order terms
would be necessary in casesinvolving pulses of exremely large bandwidth, or in media exhibiting
complicated variationsin their w-p curves over relatively small frequency ranges. With d28/dw?
constant, the three-term Taylor expansion of Eq. (89) describes the phase constant of this medium
exactly. The pulse will broaden and will acquire afrequency sweep (chirp) that is precisaly linear
withtime. Additionally, a pulse of agiven bandwidth will broaden by the same amount, regardless
of what carrier frequency is used.

12.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which > = 10 ps?/km.
Over what distance will the pulse spread to twice its initial width? After propagation, the width is

T' = /T2 + (A1)2 = 2T. Thus At = /3T, where At = Boz/T. Therefore

2 2
@—@Torz:ﬁT _ /36ps°® _

= = =4.3Kk
T Bo 10ps?/km Skm

12.30. A T = 20 pstransform-limited pulse propagates through 10 km of a dispersive channel for which 8, =
12 ps?/km. The pulse then propagates through a second 10 km channel for which > = —12 ps?/km.
Describe the pulse at the output of the second channel and give a physical explanation for what hap-
pened.

Our theory of pulse spreading will allow for changesin g2 down the length of the channel. In fact, we
may writein genera:

1 L
AT = ?/(; B2(2) dz

Having B> change sign at the midpoint, yields a zero A, and so the pulse emerges from the output
unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases with time over
the pulse envelope) during the first half of the channel. When B> switches sign, the pulse begins to
acquire a negative chirp in the second half, which, over an equal distance, will completely eliminate
the chirp acquired during the first half. The pulse, if originally transform-limited at input, will emerge,
again transform-limited, at its original width. More generally, complete dispersion compensation is
achieved using atwo-segment channel when oL = —B,L’, assuming dispersion terms of higher order
than 8> do not exist.

212



	We Want Your Feedback
	Textbook Website
	McGraw-Hill Website

	We Want Your Feedback (1)
	Textbook Website
	McGraw-Hill Website

	We Want Your Feedback (2)
	Textbook Website
	McGraw-Hill Website

	We Want Your Feedback (3)
	Textbook Website
	McGraw-Hill Website

	Engineering Electromagnetics
	Chapter 12 Plane Waves at Boundries and in Dispersive Media
	12.3 Wave Reflection From Multiple Interfaces


	We Want Your Feedback (4)
	Textbook Website
	McGraw-Hill Website

	We Want Your Feedback (5)
	Textbook Website
	McGraw-Hill Website

	Engineering Electromagnetics (1)
	Chapter 12 Plane Waves at Boundries and in Dispersive Media
	12.5 Plane Wave Reflection At Oblique Incidence Angles


	We Want Your Feedback (6)
	Textbook Website
	McGraw-Hill Website


	background: 
	back: 
	forward: 
	e-text: 
	TOC: 


