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- 50 sin jix

Figure 10.3 For Example 10.1; wave
travels along — ax.

(c) t = Tl

PRACTICE EXERCISE 10.1 J

In free space, H = 0.1 cos (2 X 108/ - kx) ay A/m. Calculate

(a) k, A, and T

(b) The time tx it takes the wave to travel A/8

(c) Sketch the wave at time tx.

Answer: (a) 0.667 rad/m, 9.425 m, 31.42 ns, (b) 3.927 ns, (c) see Figure 10.4.

0.3 WAVE PROPAGATION IN LOSSY DIELECTRICS

As mentioned in Section 10.1, wave propagation in lossy dielectrics is a general case from
which wave propagation in other types of media can be derived as special cases. Therefore,
this section is foundational to the next three sections.
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We define the surface or skin resistance Rs (in fl/m2) as the real part of the 77 for a good
conductor. Thus from eq. (10.55)

(10.56)

This is the resistance of a unit width and unit length of the conductor. It is equivalent to the
dc resistance for a unit length of the conductor having cross-sectional area 1 X 5 . Thus for
a given width w and length €, the ac resistance is calculated using the familiar dc resistance
relation of eq. (5.16) and assuming a uniform current flow in the conductor of thickness 6,
that is,

obw w
(10.57)

where S 8w. For a conductor wire of radius a (see Figure 10.9), w = 2ira, so

_J__
/?ac _ ff27ra6 a

fl^~~~^~26

(77ra2

Since 6 <3C a at high frequencies, this shows that /?ac is far greater than Rdc. In general, the
ratio of the ac to the dc resistance starts at 1.0 for dc and very low frequencies and in-
creases as the frequency increases. Also, although the bulk of the current is nonuniformly
distributed over a thickness of 56 of the conductor, the power loss is the same as though it
were uniformly distributed over a thickness of 6 and zero elsewhere. This is one more
reason why 5 is referred to as the skin depth.

EXAMPLE 10.2
A lossy dielectric has an intrinsic impedance of 200 /30° fi at a particular frequency. If, at
that frequency, the plane wave propagating through the dielectric has the magnetic field
component

H = 10e"°"cos(cof--xJa>,A/m

find E and a. Determine the skin depth and wave polarization.

Solution:

The given wave travels along ax so that ak = ax; aH = ay, so

- a £ = a* X aH = ax x ay = az

or

aE = - a z
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AlsoWo = 10, so

H,
- = 77 = 200 rW = 200 eJ*16 -> Eo = 2000e"r/6

Except for the amplitude and phase difference, E and H always have the same form. Hence

E = Re (2000e ; 7 rV7V"'a£)

or

E = - 2 e ~ M cosf cot - - + - ) az kV/m
V 2 6 /

Knowing that /3 = 1/2, we need to determine a. Since

and

»-<*/¥ K H =
1 +

CT

COS

1 +
coe

+ 1

1/2

- 1

+ 1

But — = tan 2(L = tan 60° = V l Hence,
we '

2 -

2+ lJ V3

or

a = -4= = F = 0.2887 Np/m4= = F
V3 2V3

and

m5 = - = 2 V 3 = 3.4641
a

The wave has an Ez component; hence it is polarized along the z-direction.



430 Electromagnetic Wave Propagation

PRACTICE EXERCISE 10.2

A plane wave propagating through a medium with er — 8, ixr - 2 has E = 0.5
e~^3 sin(108f - @z) ax V/m. Determine

(a) 0

(b) The loss tangent

(c) Wave impedance

(d) Wave velocity

(e) H field

Answer: (a) 1.374 rad/m, (b) 0.5154, (c) 177.72 /13.63° 0, (d) 7.278 X 107 m/s,
(e) 2.%\le~M sin(1081 - 0z - 13.63°)ay mA/m.

EXAMPLE 10.3 In a lossless medium for which -q = 60ir, ixr = 1, and H = —0.1 cos (cof — z) ax +
0.5 sin (cor — z)&y A/m, calculate er, co, and E.

Solution:

In this case, a = 0, a = 0, and /3 = 1, so

/Xo 12O-7T

or

120TT 120x
e r = = ^ — = 2 -> er = 4

60TT

2co

c

or

co =
1 (3 X 108)

= 1.5 X 108rad/s

From the given H field, E can be calculated in two ways: using the techniques (based on
Maxwell's equations) developed in this chapter or directly using Maxwell's equations as in
the last chapter.

Method 1: To use the techniques developed in this chapter, we let

E = H, + H2



10.6 PLANE WAVES IN GOOD CONDUCTORS 431

where Hj = -0.1 cos (uf - z) ax and H2 = 0.5 sin (wt - z) ay and the corresponding
electric field

E = E, + E7

where Ej = Elo cos (cof - z) a£i and E2 = E2o sin (cof - z) aEi. Notice that although H
has components along ax and ay, it has no component along the direction of propagation; it
is therefore a TEM wave.
ForE b

afi] = -(a* X aHl) = - ( a , X -a x ) = a,

E\o = V Hlo = 60TT (0.1) = 6TT

Hence

ForE,

= 6x cos {bit — z) av

aEl = ~{akx aH) = -{az X ay) = ax

E2o = V H2o = 60TT (0.5) = 30x

Hence

E2 = 30TT sin {wt - z)ax

Adding E) and E2 gives E; that is,

E = 94.25 sin (1.5 X 108f - z) ax + 18.85 cos (1.5 X 108? - z) ay V/m

Method 2: We may apply Maxwell's equations directly.

1
V X H = iE + s •

0

because a = 0. But

V X H =

dt

JL JL A.
dx dy dz
Hx(z) Hv(z) 0

dHy dHx

= H2o cos {bit - z) ax + Hlo sin (wf - z)ay

where Hlo = -0.1 and//2o = 0.5. Hence

i f W W

E = - VxH(i ( = — sin (wf - z) a, cos (cor - z) a,,
e J eco eco '

= 94.25 sin(cor - z)ax+ 18.85 cos(wf - z) a, V/m
as expected.
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PRACTICE EXERCISE 10.3

A plane wave in a nonmagnetic medium has E = 50 sin (10 t + 2z) ay V/m. Find

(a) The direction of wave propagation

(b) A,/, and sr

(c) H

Answer: (a) along -z direction, (b) 3.142 m, 15.92 MHz, 36, (c) 0.7958
sin(108f + 2z) ax A/m.

EXAMPLE 10.4
A uniform plane wave propagating in a medium has

E = 2e'az sin (108f - /3z) ay V/m.

If the medium is characterized by er = 1, \ir = 20, and a = 3 mhos/m, find a, /3, and H.

Solution:

We need to determine the loss tangent to be able to tell whether the medium is a lossy di-
electric or a good conductor.

a
we

108 X 1 X
10

ro = 3393

36TT

showing that the medium may be regarded as a good conductor at the frequency of opera-
tion. Hence,

a= (3 =
4TT X 10~7 X 20(108)(3) 1/2

Also

= 61.4
a = 61.4 Np/m, /3 = 61.4 rad/m

4TT X 10"' X 20(10s)

a

8OO7T

1/2

tan 20 = — = 3393 = 45° = TT/4

Hence

H = Hoe~az sin [ at - &z
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where

and

aH = ak X aE = az X ay = -ax

Thus

H -69.1 e"61'4zsin - 61.42z J ax mA/m

PRACTICE EXERCISE 10.4

A plane wave traveling in the +)>-direction in a lossy medium (er = 4, \xr = 1,
cr = 10"2 mhos/m) has E = 30 cos (109?r t + x/4) az V/m at y = 0. Find

(a) E at y = 1 m, / = 2 ns

(b) The distance traveled by the wave to have a phase shift of 10°

(c) The distance traveled by the wave to have its amplitude reduced by 40%

(d) H at y = 2 m, t = 2 ns

Answer: (a) 2.787az V/m, (b) 8.325 mm, (c) 542 mm, (d) -4.71a, mA/m

XAMPLE10.5
A plane wave E = Eo cos (u>t - j3z) ax is incident on a good conductor at z = 0. Find the
current density in the conductor.

Solution:

Since the current density J = CTE, we expect J to satisfy the wave equation in eq. (10.17),
that is,

V2JS - T
2JS = 0

Also the incident E has only an x-component and varies with z. Hence J = Jx(z, t) ax and

l _ _ 2
, 2 5X ^ sx

UZ

which is an ordinary differential equation with solution (see Case 2 of Example 6.5)

7 = Ae~yz + Be+yz
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The constant B must be zero because Jsx is finite as z~> °°. But in a good conductor,
a ^> we so that a = /3 = 1/5. Hence

and

or

7 = a + jf3 = a(l + j) =

= Ae~*

(1 + j)

where Jsx (0) is the current density on the conductor surface.

PRACTICE EXERCISE 10.5

Due to the current density of Example 10.5, find the magnitude of the total current
through a strip of the conductor of infinite depth along z and width w along y.

Answer:
V~2

EXAMPLE 10.6
For the copper coaxial cable of Figure 7.12, let a = 2 mm, b = 6 mm, and t = 1 mm. Cal-
culate the resistance of 2 m length of the cable at dc and at 100 MHz.

Solution:

Let

R = Ro + Ri

where Ro and Rt are the resistances of the inner and outer conductors.
Atdc,

/?„ = — =

aira2 5.8 X 107TT[2 X 10~3]2
= 2.744 mfi

aS oir[[b + t]2 - b2] air[t2 + 2bt\
2

~ 5.8 X 107TT [1 + 12] X 10"6

= 0.8429 mO

Hence Rdc = 2.744 + 0.8429 = 3.587 mfi
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A t / = 100 MHz,

Rsl _ I

w o82ira 2-KO. V o

2

2-K X 2 X 10"3

= 0.41 fl

TT X 10s X 4?r X 10"

5.8 X 107

Since 6 = 6.6 /xm <$C t = 1 mm, H1 = 2TT£ for the outer conductor. Hence,

w 2-Kb V a

2TT X 6 X 10
= 0.1384 fi

- 3

TT X 10s X 4TT X

5.8 X 107

Hence,

Rac = 0.41 + 0.1384 = 0.5484 U

which is about 150 times greater than Rdc. Thus, for the same effective current i, the ohmic
loss (i2R) of the cable at 100 MHz is far greater than the dc power loss by a factor of 150.

PRACTICE EXERCISE 10.6

For an aluminum wire having a diameter 2.6 mm, calculate the ratio of ac to dc re-
sistance at

(a) 10 MHz

(b) 2 GHz

Answer: (a) 24.16, (b) 341.7.

0.7 POWER AND THE POYNTING VECTOR

As mentioned before, energy can be transported from one point (where a transmitter is
located) to another point (with a receiver) by means of EM waves. The rate of such energy
transportation can be obtained from Maxwell's equations:

V X E = -J
dt

dE
—
dt

(10.58a)

(10.58b)
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and

E2

<3>(z, 0 = 7-7 e~2az cos (cot - fiz) cos (cot - Hz - 0J a,

M
e 2az [cos 6 + cos (2cot - 2/3z - 6 )] a-

(10.66)

since cos A cos B = — [cos (A — 5) + cos (A + B)]. To determine the time-average

Poynting vector 2?ave(z) (in W/m2), which is of more practical value than the instantaneous
Poynting vector 2P(z, t), we integrate eq. (10.66) over the period T = 2ir/u>; that is,

dt (10.67)

It can be shown (see Prob. 10.28) that this is equivalent to

(10.68)

By substituting eq. (10.66) into eq. (10.67), we obtain

J

(10.69)

The total time-average power crossing a given surface S is given by

p — \ Of, (10.70)

We should note the difference between 2?, S?ave, and Pave. SP(*> y. z. 0 i s m e Poynting
vector in watts/meter and is time varying. 2PaVe0c, y, z) also in watts/meter is the time
average of the Poynting vector S?; it is a vector but is time invariant. Pave is a total time-
average power through a surface in watts; it is a scalar.

EXAMPLE 10.7
In a nonmagnetic medium

E = 4 sin (2TT X 107 - 0.8*) a, V/m
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Find

(a) er, r;

(b) The time-average power carried by the wave

(c) The total power crossing 100 cm2 of plane 2x + y = 5

Solution:

(a) Since a — 0 and (3 ¥= co/c, the medium is not free space but a lossless medium.

(3 = 0.8, co = 27r X 107, fx = [io (nonmagnetic), e = eoe r

Hence

or

= co V lie = co V iioeosr = — V e r

13c _ 0.8(3 X 108) _ 12
r " co ~ 2TT X 107

 IT

sr = 14.59

8

= 98.7 0

= - sin2(cor - /3x)

I

UOir = 120. • f2 = 10.2

= M = ^
2TJ 2 X IOTT2

= 81 axmW/m2

(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),

2a, + a,,

V5

Hence the total power is

Pav, =

= (81 X 10"X) • (100 X 1(

162 X 10~5

- = 724.5 /tW

2ax

V5



10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE 445

o, --0 a, =0

Hgure 10.13 Standing waves due to reflection at an interface between two
lossless media; X = 2ir/f3i.

or

s - 1

s + 1
(10.91)

Since |F| :£ 1, it follows that 1 < s < °°. The standing-wave ratio is dimensionless and it
is customarily expressed in decibels (dB) as

s indB = 201og10i
f (10.92)

\MPLE 10.8
In free space (z ^ 0), a plane wave with

H = 10 cos (108f - 0z) ax mA/m

is incident normally on a lossless medium (e = 2eo, p = 8jiio) in region z > 0. Determine
the reflected wave H n Er and the transmitted wave Hr, Er.

Solution:

This problem can be solved in two different ways.

Method 1: Consider the problem as illustrated in Figure 10.14. For free space,

10s

c 3 X 108

= 7?o = 1207T
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I free space

Figure 10.14 For Example 10.8.

lossless dielectric

For the lossless dielectric medium,

/— / / o) 4
ft, = coV/xe = w\VosoV/x,£ r = — • (4) = 4/3, = -

! Given that H, = 10 cos (108r - (3^) ax, we expect that

where

I and

Hence,

Now

f = £ i o cos (108f

X a .̂ = ax X a, = -ay

io = 10

E,- = - 10rjo cos (108? - /3,z) a,, mV/m

! Thus

r

Eio

E r = - — rj0 cos f 108f + - z ) &y mV/m
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from which we easily obtain Hr as

Similarly,

Hr = cos ( 108f + - z ) ax mA/m

F 4 4
^ = r = l + T = - or Ew = -Eio

Thus

E, = Eto cos (108f - /32z) aEi

where a£i = a£. = - a r Hence,

440

3
Er = - — rjocos ( 108? - -z}aymV/m

from which we obtain

Ht = — cos (108f - -zjax mA/m

Method 2: Alternatively, we can obtain H r and H, directly from H, using

Thus

= - F and — = T

1 1 0

Hro - ——Hio - —

and

to 3 2r?o " 3 '° 3

10 o
H, = - — cos (108? + j3iz) ax mA/m

20
H, = — cos (108f - P2z) ax mA/m

as previously obtained.
Notice that the boundary conditions at z = 0, namely,

40 o
E,<0) + Er(0) = E,(0) = -— vo cos (108?) ay
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and

20 o
H,<0) + Hr(0) = H,(0) = — cos (108r) ax

are satisfied. These boundary conditions can always be used to cross-check E and H.

PRACTICE EXERCISE 10.8

A 5-GHz uniform plane wave Efa = 10 e~jl3z ax V/m in free space is incident nor-
mally on a large plane, lossless dielectric slab (z > 0) having s = 4e0, /u. = /x0. Find
the reflected wave ErJ and the transmitted wave Ets.

Answer: -3.333 expO'&z) ax V/m, 6.667 exp(-jP2z) a* V/m where p2 = Wi =
200TT/3.

EXAMPLE 10.9
Given a uniform plane wave in air as

E, = 40 cos (at - Pz) ax + 30 sin (wt - /?z) a}, V/m

(a) FindH,.

(b) If the wave encounters a perfectly conducting plate normal to the z axis at z = 0, find
the reflected wave Er and Hr.

(c) What are the total E and H fields for z < 0?

(d) Calculate the time-average Poynting vectors for z < 0 and z > 0.

Solution:

(a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of
two waves En and E,2, where

En = 40 cos (wf - Pz) ax, E;2 = 30 sin (wt - /3z) ay

At atmospheric pressure, air has er = 1.0006 = 1. Thus air may be regarded as free space.
Let H, = Hn + H,-2.

where

H n = HiUl cos (ait - &z) aHl

= Eil0 40

120TT 3TT

a//, = a t X a £ = a, X ax = ay



Hence

Similarly,

where

Hence

and
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Hn = — cos (ut - j3z) ay
3TT

I,-2 = Hi2o sin (ut - /3z) a#2

= Ei2o 30 = 1

»?o 1207T 47T

= aj. X a £ = az X ay = - a x

H,2 = ——- sin (cor - /3z)
4TT

= sin (ut - j8z) ax H cos (art - /3z) av mA/m
4TT 3TT

This problem can also be solved using Method 2 of Example 10.3.

(b) Since medium 2 is perfectly conducting,

02 „ .

that is,

r = - 1 , T = 0

showing that the incident E and H fields are totally reflected.

F = r F = — F-

Hence,

Er = - 4 0 cos (ut + $z) ax - 30 sin (ut + (3z) ay V/m

Hr can be found from Er just as we did in part (a) of this example or by using Method 2 of
the last example starting with H,. Whichever approach is taken, we obtain

Hr = — cos (ut + |Sz) av sin (ut + |Sz)ax A/m
i-w 4x
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(c) The total fields in air

E, = E, + Er and H, = H, + Hr

can be shown to be standing wave. The total fields in the conductor are

E2 = Er = 0, H2 = H, = 0.

(d) For z < 0,

™ _ I E , /

For z > 0 ,

1 2 2

= T — [Eioaz - Emaz]
2»?

1 2 + 302)
240TT

= 0

[(402 + 302)az - (402 + 302)aJ

op — |E2

2rj2

= ^ a 7 = 0

because the whole incident power is reflected.

PRACTICE EXERCISE 10.9

The plane wave E = 50 sin (o)t — 5x) ay V/m in a lossless medium (n = 4/*o,
e = so) encounters a lossy medium (fi = no, e = 4eo, <r = 0.1 mhos/m) normal to
the x-axis at x = 0. Find

(a) F, T, and s

(b) E randH r

(c) E randH,

(d) The time-average Poynting vectors in both regions

Answer: (a) 0.8186 /171.1°, 0.2295 /33.56°, 10.025, (b) 40.93 sin (ait + 5x +
171.9°) ay V/m, -54.3 sin (at + 5x + 171.9° az mA/m,

-6.02U(c) 11.47 e~6-UZI*sin (cor -7.826x + 33.56°) ay V/m, 120.2 e
M - 7.826x - 4.01°) a, mA/m, (d) 0.5469 &x W/m2, 0.5469 exp
(-12.04x)axW/m2.

sin
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EXAMPLE 10.10
An EM wave travels in free space with the electric field component

E , = 100e-'<0-866v+a5j)axV/m

Determine

(a) co and X

(b) The magnetic field component

(c) The time average power in the wave

Solution:

(a) Comparing the given E with

E = E eikT = E eJ
{k'x+k<y+k'z)

 a

it is clear that

kx = 0, ky = 0.866, kz = 0.5

Thus

But in free space,

Hence,

k= Vk2
x + ky + k\ = V(0.866)2 + (0.5)2 = 1

/ co 2TT

k = 13 = coV/i020 = — = —
C A

co = kc = 3 X 10*rad/s

X = — = 2TT = 6.283 m
k

(b) From eq. (10.96), the corresponding magnetic field is given by

Hs = — k X E.
^iCO

(0.866ay + 0.5az)

~ 4x X 10"7 X 3 X 108
X 100a re

j k r

or

H, = (1.33 av - 2.3 a,) e
m*66v+(l5z> mA/m

(c) The time average power is

(100)2

2(120TT)
(0.866 av + 0.5 a,)

= 11.49av + 6.631 a,W/m2
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XAMPLE 10.11

PRACTICE EXERCISE 10.10

Rework Example 10.10 if

£ = (10

in free space.

5a2) cos(cof + 2y - Az) V/m

Answer: (a) 1.342 X 109 rad/s, 1.405 m, (b) -29.66 cos (1.342 X 109f + 2y-
Az) ax mA/m, (c) -0.07415 ay + 0.1489 a, W/m2.

A uniform plane wave in air with

E = 8 cos (at - Ax - 3z) av V/m

is incident on a dielectric slab (z ^ 0) with fxr = 1.0, er = 2.5, a = 0. Find

(a) The polarization of the wave

(b) The angle of incidence

(c) The reflected E field

(d) The transmitted H field

Solution:
(a) From the incident E field, it is evident that the propagation vector is

Hence,

k, = 4a, + 3a_, -»£,- = 5 = coV/u,0e0 =

= 5c = 15 X 108 rad/s.

A unit vector normal to the interface (z = 0) is az. The plane containing k and a- is
y = constant, which is the jcz-plane, the plane of incidence. Since E, is normal to this
plane, we have perpendicular polarization (similar to Figure 10.17).

(b) The propagation vectors are illustrated in Figure 10.18 where it is clear that

tan0,- = — = -->0,- = 53.13°
kiz 3

Alternatively, without Figure 10.18, we can obtain 0, from the fact that 0, is the angle
between k and an, that is,

cos 0,- = ak • an =
3a,

or

0,- = 53.13°
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j (c) An easy way to find E r is to use eq. (10.116a) because we have noticed that this
1 problem is similar to that considered in Section 10.9(b). Suppose we are not aware of this.
I Let

j Er = Ero cos (cor - kr • r) ay

> which is similar to form to the given E,. The unit vector ay is chosen in view of the fact that
i the tangential component of E must be continuous at the interface. From Figure 10.18,

k r = krx ax — krz az

where

• krx = kr sin 9n krz = kr cos 6r

But 6r = Oj and kr = k}• = 5 because both kr and k{ are in the same medium. Hence,

kr = Aax - 3az

To find Em, we need 6t. From Snell's law

sin 6, = — sin 0, =
n2

sin 53.13°

sin 8'i

2.5

or

6, = 30.39°

Eio

7]2 COS 0; - IJi COS 0,

rj! cos 6tcos

Figure 10.IS Propagation vectors of
ExamplelO.il.
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where rjl = rjo = 377, n]2 =
377

= 238.4

Hence,

and

238.4 cos 35.13° - 377 cos 30.39°
1 ~~ 238.4 cos 53.13° + 377 cos 30.39° ~

Em = T±Eio = -0.389(8) = -3.112

E, = -3.112 cos (15 X 108f - Ax + 3z)ayV/m

(d) Similarly, let the transmitted electric field be

E, = Eto cos (ut - k, • r) ay

where

W 1

c

From Figure 10.18,

k, = j32 = w V

_ 15 X 108

3 X 108

ktx = k, sin 6, = 4

kR = ktcos6, = 6.819

or

k, = 4ax + 6.819 az

Notice that kix = krx = ktx as expected.

_Ew__ 2 7]2 COS dj

Eio i)2 cos dj + 7)] cos 6,

2 X 238.4 cos 53.13°
~ 238.4 cos 53.13° + 377 cos 30.39°
= 0.611

The same result could be obtained from the relation T±= \ + I \ . Hence,

Eto = TLEio = 0.611 X 8 = 4.888

Ef = 4.888 cos (15 X 108r -Ax- 6.819z) ay
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From E,, H, is easily obtained as

7.906(238.4) a, cos («r - k • r)

H( = (-17.69 ax + 10.37 az) cos (15 X \(ft -Ax- 6.819z) mA/m.

PRACTICE EXERCISE 10.11

If the plane wave of Practice Exercise 10.10 is incident on a dielectric medium
having a = 0, e — 4eo, /x = /to and occupying z ^ 0 , calculate

(a) The angles of incidence, reflection, and transmission

(b) The reflection and transmission coefficients

(c) The total E field in free space

(d) The total E field in the dielectric

(e) The Brewster angle.

Answer: (a) 26.56°, 26.56°, 12.92°, (b) -0.295, 0.647, (c) (10 ay + 5az) cos
(at + 2y - 4z) + (-2.946a, + 1.473az) cos (cat + 2y + 4z) V/m,
(d) (7.055a, + 1.618az) cos (wf + 2y - 8.718z) V/m, (e) 63.43°.

SUMMARY 1. The wave equation is of the form

dt2

2d
2<P

- u — T = 0
dz

with the solution

4> = A sin (wf - /3z)

where u = wave velocity, A = wave amplitude, co = angular frequency (=2TT/), and
)3 = phase constant. Also, (3 = OJ/M = 2TT/X or M = fk = X/r, where X = wavelength
and T = period.

2. In a lossy, charge-free medium, the wave equation based on Maxwell's equations is of
the form

V2AS - 72A, = 0

where As is either Es or Hs and y = a + jf3 is the propagation constant. If we assume
Es = Exs(z) &x, we obtain EM waves of the form

E(z, t) = Eoe'az cos (cof - Pz) ax

H(z, r) = Hoe~az cos (wt - 0z - 0,) av
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where a = attenuation constant, j3 = phase constant, 77 = |r/|/fln = intrinsic imped-
ance of the medium. The reciprocal of a is the skin depth (5 = I/a). The relationship
between /3, w, and X as stated above remain valid for EM waves.

3. Wave propagation in other types of media can be derived from that for lossy media as
special cases. For free space, set a = 0, e = sQ, fi = /xo; for lossless dielectric media,
set a = 0, e = eosr, and n = jxofxr\ and for good conductors, set a — °°, e = ea,
H = fio, or a/we —> 0.

4. A medium is classified as lossy dielectric, lossless dielectric or good conductor depend-
ing on its loss tangent given by

tan 6 =
Js

\h,
a

coe

where ec = e' - je" is the complex permittivity of the medium. For lossless dielectrics
tan0 ^C 1, for good conductors tan d Ĵ> 1, and for lossy dielectrics tan 6 is of the
order of unity.

5. In a good conductor, the fields tend to concentrate within the initial distance 6 from the
conductor surface. This phenomenon is called skin effect. For a conductor of width w
and length i, the effective or ac resistance is

awd

where <5 is the skin depth.
6. The Poynting vector, 9\ is the power-flow vector whose direction is the same as the di-

rection of wave propagation and magnitude the same as the amount of power flowing
through a unit area normal to its direction.

f = E X H , 9>ave = 1/2 Re (E, X H*)

7. If a plane wave is incident normally from medium 1 to medium 2, the reflection coeffi-
cient F and transmission coefficient T are given by

12

Eio V2 + V

The standing wave ratio, s, is defined as

= i^= 1 + r

s =

8. For oblique incidence from lossless medium 1 to lossless medium 2, we have the
Fresnel coefficients as

rj2cos 6, - r] | cos 0,

r/2 cos 6, + rjt cos 0/ II =
2?j2 cos 6j

1)2 COS dt + Tfj] COS dj
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for parallel polarization and

r)2 COS 6/ — 7)i COS 8t

i)2 cos 6i + r)i cos 6,

for perpendicular polarization. As in optics,

T±_ =
2ry2 COS Oj

rj2 cos 6i + rjj cos

sin i
sin 0, 02

Total transmission or no reflection (F = 0) occurs when the angle of incidence 0, is
equal to the Brewster angle.

10.1 Which of these is not a correct form of the wave Ex = cos (ut —

(a) cos (Pz ~ ut)

(b) sin (Pz - ut - TT/2)

(2-Kt 2TT:

(c) cos I — —

\ 1 A

(d) Re (e-/(w'"/3z))

(e) cos 0(z ~ ut)
10.2 Identify which of these functions do not satisfy the wave equation:

(a) 50eM '~3z )

(b) sinw(10z + 5t)

(c) (x + 2tf

• _, (d) cos2(>> + 50

(e) sin x cos t

—> (f) cos (5y + 2x)

10.3 Which of the following statements is not true of waves in general?

-~"> (a) It may be a function of time only.

(b) It may be sinusoidal or cosinusoidal.

(c) It must be a function of time and space.

(d) For practical reasons, it must be finite in extent.

10.4 The electric field component of a wave in free space is given by E = 10 cos
(107f + kz) av, V/m. It can be inferred that

(a) The wave propagates along av.

(b) The wavelength X = 188.5 m.
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(c) The wave amplitude is 10 V/m.

(d) The wave number k = 0.33 rad/m.

(e) The wave attenuates as it travels.

10.5 Given that H = 0.5 e
rect?

sin (106? - 2x) a, A/m, which of these statements are incor-

(a) a = 0.1 Np/m

- (b) 0 = - 2 rad/m

(c) co = 106rad/s

(d) The wave travels along ax.

(e) The wave is polarized in the z-direction.

. (f) The period of the wave is 1 /ts.

10.6 What is the major factor for determining whether a medium is free space, lossless di-
electric, lossy dielectric, or good conductor?

(a) Attenuation constant

(b) Constitutive parameters (a, e, f£)

(c) Loss tangent

(d) Reflection coefficient

10.7 In a certain medium, E = 10 cos (108r — 3y) ax V/m. What type of medium is it?

(a) Free space

(b) Perfect dielectric

(c) Lossless dielectric

(d) Perfect conductor

10.8 Electromagnetic waves travel faster in conductors than in dielectrics.

(a) True

(b) False

10.9 In a good conductor, E and H are in time phase.

(a) True

— y (b) False

10.10 The Poynting vector physically denotes the power density leaving or entering a given
volume in a time-varying field.

— ^ (a) True

(b) False

Answers: 10.1b, 10.2d,f, 10.3a, 10.4b,c, 10.5b,f, 10.6c, 10.7c, 10.8b, 10.9b, 10.10a.
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PROBLEMS
10.1 An EM wave propagating in a certain medium is described by

E = 25 sin (2TT X 106f ™ 6x) a, V/m

(a) Determine the direction of wave propagation.

(b) Compute the period T, the wavelength X, and the velocity u.

(c) Sketch the wave at t = 0, 778, 774, 772.

10.2 (a) Derive eqs. (10.23) and (10.24) from eqs. (10.18) and (10.20).

(b) Using eq. (10.29) in conjunction with Maxwell's equations, show that

V =
y

(c) From part (b), derive eqs. (10.32) and (10.33).

10.3 At 50 MHz, a lossy dielectric material is characterized by e = 3.6e0, p = 2.1/to, and
a = 0.08 S/m. If E, = 6e~yx az V/m, compute: (a) y, (b) X, (c) u, (d) r/, (e) H,.

10.4 A lossy material has /x = 5fio, e = 2eo. If at 5 MHz, the phase constant is 10 rad/m, cal-
culate

(a) The loss tangent

(b) The conductivity of the material

(c) The complex permittivity

(d) The attenuation constant

(e) The intrinsic impedance

*10.5 A nonmagnetic medium has an intrinsic impedance 240 /30° 0. Find its

(a) Loss tangent

(b) Dielectric constant

(c) Complex permittivity

(d) Attenuation constant at 1 MHz

10.6 The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by
18% every meter. If the wave operates at 10 MHz and the electric field leads the mag-
netic field by 24°, calculate: (a) the propagation constant, (b) the wavelength, (c) the skin
depth, (d) the conductivity of the medium.

10.7 Sea water plays a vital role in the study of submarine communications. Assuming that
for sea water, a = 4 S/m, sr = 80, \xr = 1, and / = 100 MHz, calculate: (a) the phase
velocity, (b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

10.8 In a certain medium with /x = /xo, e = 4e0,

H = \2e~0Ay sin (ir X 108/ - fiy) ax A/m

find: (a) the wave period T, (b) the wavelength X, (c) the electric field E, (d) the phase
difference between E and H.



PROBLEMS 467

10.9 In a medium,

E = 16e"005x sin (2 X 10st - 2x) az V/m

find: (a) the propagation constant, (b) the wavelength, (c) the speed of the wave, (d) the
skin depth.

10.10 A uniform wave in air has

E = 10COS(2TT X 106f- 0z)av

(a) Calculate /3 and X.

(b) Sketch the wave at z = 0, A/4.

(c) FindH.

10.11 The magnetic field component of an EM wave propagating through a nonmagnetic
medium (p, = /xo) is

H = 25 sin (2 X 108? + 6x) ay mA/m

Determine:

(a) The direction of wave propagation.

(b) The permittivity of the medium.

(c) The electric field intensity.

10.12 If H = 10 sin (oof — 4z)ax mA/m in a material for which a = 0, ix = /xo, e = 4eo, cal-
culate u, X, and Jd.

10.13 A manufacturer produces a ferrite material with JX = 750/xo, e = 5eo, and a =
l (T 6 S/ma t l0MHz.

(a) Would you classify the material as lossless, lossy, or conducting?

(b) Calculate j3 and X.

(c) Determine the phase difference between two points separated by 2 m.

(d) Find the intrinsic impedance.

*10.14 By assuming the time-dependent fields E = E o e i ( k r "" ( ) and H = Hoe-/(k'r~*") where
k = kxax + ky&y + k-az is the wave number vector and r = xax + ya^ + zaz is the
radius vector, show that V X E = — dB/df can be expressed as k X E = /̂ wH and
deduce ak X aE = aH.

10.15 Assume the same fields as in Problem 10.14 and show that Maxwell's equations in a
source-free region can be written as

k - E = 0

k H = 0

k X E = wftH

k X H = -coeE
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From these equations deduce

&k X a£ = and ak X aw = —

10.16 The magnetic field component of a plane wave in a lossless dielectric [is

H = 30 sin (2-ir X 108f - 5*) az mA/m

(a) If> r = l.finde,..

(b) Calculate the wavelength and wave velocity.

(c) Determine the wave impedance.

(d) Determine the polarization of the wave.

(e) Find the corresponding electric field component.

(f) Find the displacement current density.

10.17 In a nonmagnetic medium,

E = 50 cos (109f - 8JC) ay + 40 sin (109f - 8x) az V/m

find the dielectric constant er and the corresponding H.

10.18 In a certain medium

E = 10 cos (2TT X 107r - Px)(ay + az) V/m

If ix = 50/*o, e = 2e0, and a = 0, find (3 and H.

10.19 Which of the following media may be treated as conducting at 8 MHz?

(a) Wet marshy soil (e = 15eo, /x = /xo, a = 10~2 S/m)

(b) Intrinsic germanium (e = 16e0, p = JXO, a = 0.025 S/m)

(c) Sea water (e = 81eo, ji = ixo, a = 25 S/m)

10.20 Calculate the skin depth and the velocity of propagation for a uniform plane wave at fre-
quency 6 MHz traveling in polyvinylchloride {p.r — 1, er = 4, tan 8V = 1 X 10~2).

10.21 A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/m at 107 Hz and
its magnitude is reduced by 60% for every 2 m traveled. Find the skin depth and speed of
the wave.

10.22 (a) Determine the dc resistance of a round copper wire (a = 5.8 X 107 S/m,

jxr = 1, er = 1) of radius 1.2 mm and length 600 m.

(b) Find the ac resistance at 100 MHz.

(c) Calculate the approximate frequency where dc and ac resistances are equal.

10.23 A 40-m-long aluminum (a = 3.5 X 107 S/m, fir = 1, e r = 1) pipe with inner and
outer radii 9 mm and 12 mm carries a total current of 6 sin 106 irf A. Find the skin depth
and the effective resistance of the pipe.

10.24 Show that in a good conductor, the skin depth 8 is always much shorter than the wave-
length.
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10.25 Brass waveguides are often silver plated to reduce losses. If at least the thickness of
silver (/* = /xo, e = eo, a = 6.1 X 107 S/m) must be 55, find the minimum thickness
required for a waveguide operating at 12 GHz.

10.26 A uniform plane wave in a lossy nonmagnetic media has

E s = (5ax + 12ay)e~7Z, y = 0.2 + /3.4/m

(a) Compute the magnitude of the wave at z = 4 m.

(b) Find the loss in dB suffered by the wave in the interval 0 < z < 3 m.

(c) Calculate the Poynting vector at z = 4, t = 778. Take co = 108 rad/s.

10.27 In a nonmagnetic material,

H = 30 cos (2TT X 108f - 6x) a, mA/m

find: (a) the intrinsic impedance, (b) the Poynting vector, (c) the time-average power
crossing the surface x = 1,0 < y < 2, 0 < z < 3 m.

*10.28 Show that eqs. (10.67) and (10.68) are equivalent.

10.29 In a transmission line filled with a lossless dielectric (e = 4.5eo, fx = ix0),

E =
40

sin (ut - 2z) ap V/m

10.30

find: (a) co and H, (b) the Poynting vector, (c) the total time-average power crossing the
surface z = 1 m, 2 mm < p < 3 mm, 0 < <j> < 2TT.

(a) For a normal incidence upon the dielectric-dielectric interface for which
Mi = M2 = î cn w e define R and Tas the reflection and transmission coefficients for
average powers, i.e., Pr>avc = /?/>,>ve and Pume = TPiawe. Prove that

R = "l ~ "2

"I + «2
and T =

where M, and n2 are the reflective indices of the media.

(b) Determine the ratio iii/n2 so that the reflected and the transmitted waves have the

same average power.

10.31 The plane wave E = 30 cos(w? — z)ax V/m in air normally hits a lossless medium
(p, = no, e = 4eo) at z = 0. (a) Find F, r, and s. (b) Calculate the reflected electric and
magnetic fields.

10.32 A uniform plane wave in air with

H = 4 sin (wf — 5x) ay A/m

is normally incident on a plastic region with the parameters/x = fto, e = 4e0, andff = 0.
(a) Obtain the total electric field in air. (b) Calculate the time-average power density in the
plastic region, (c) Find the standing wave ratio.
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10.33 A plane wave in free space with E = 3.6 cos (ut — 3x) ay V/m is incident normally on
an interface at x = 0. If a lossless medium with a = 0, er = 12.5 exits for x & 0 and
the reflected wave has H r = —1.2 cos (ut + 3x) a- mA/m, find \x2.

10.34 Region 1 is a lossless medium for which y s 0, \x = /*„, e = 4eo, whereas region 2 is
free space, y < 0. If a plane wave E = 5 cos (108/ + /3y) a, V/m exists in region 1,
find: (a) the total electric field component of the wave in region 2, (b) the time-average
Poynting vector in region 1, (c) the time-average Poynting vector in region 2.

10.35 A plane wave in free space (z £ 0) is incident normally on a large block of material with
er = 12, \xr = 3, a = 0 which occupies z > 0. If the incident electric field is

E = 30 cos (ut - z) ay V/m

find: (a) u, (b) the standing wave ratio, (c) the reflected magnetic field, (d) the average
power density of the transmitted wave.

10.36 A 30-MHz uniform plane wave with

H = 10 sin (ut + fix) az mA/m

exists in region x > 0 having a = 0, e = 9eo, p = 4/io. At x = 0, the wave encounters
free space. Determine (a) the polarization of the wave, (b) the phase constant (3, (c) the
displacement current density in region x > 0, (d) the reflected and transmitted magnetic
fields, and (e) the average power density in each region.

10.37 A uniform plane wave in air is normally incident on an infinite lossless dielectric mater-
ial having e = 3eo and /x = /xo. If the incident wave is E, = 10 cos (ut — z) av V/m.
find:

(a) X and u of the wave in air and the transmitted wave in the dielectric medium

(b) The incident H, field

(c) Tandr

(d) The total electric field and the time-average power in both regions

*10.38 A signal in air (z S: 0) with the electric field component

E = 10 sin (ut + 3z) ax V/m

hits normally the ocean surface at z = 0 as in Figure 10.19. Assuming that the ocean
surface is smooth and that s = 80eo, \x = /io, a = 4 mhos/m in ocean, determine

(a) co

(b) The wavelength of the signal in air

(c) The loss tangent and intrinsic impedance of the ocean

(d) The reflected and transmitted E field

10.39 Sketch the standing wave in eq. (10.87) at t = 0, 7/8, 774, 37/8, 772, and so on, where
T = 2itlu.
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Figure 10.19 For Problem 10.38.

ocean

S = 80£ o , |U. = flo, (T = 4

10.40 A uniform plane wave is incident at an angle 0, = 45° on a pair of dielectric slabs joined
together as shown in Figure 10.20. Determine the angles of transmission 0t] and 6,2 in the
slabs.

10.41 Show that the field

E.v = 20 sin (kj) cos (kyy) az

10.42

where k2
x + k\ = aj2/ioeo, can be represented as the superposition of four propagating

plane waves. Find the corresponding H,.

Show that for nonmagnetic dielectric media, the reflection and transmission coefficients
for oblique incidence become

2 cos 0; sin 0,

r, =-

tan
tan

sin

(0r~

(0,4-

(0,-

»,)

sin (fit + 0,)'

sin (0, 4- 0;) cos (0, - 0,)

2 cos 6i sin 6,

sin (0, 4- 0,)

*10.43 A parallel-polarized wave in air with

E = (8a,. - 6a,) sin (cot - Ay - 3z) V/m

impinges a dielectric half-space as shown in Figure 10.21. Find: (a) the incidence angle
0,, (b) the time average in air (/t = pt0, e = e0), (c) the reflected and transmitted E
fields.

free space free space
Figure 10.2(1 For Problem 10.40.
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Figure 10.21 For Problem 10.43.

Air

(E = s0 , M- = i ( E = - 4 K , ,

10.44 In a dielectric medium (e = 9eo, n = M o) , a plane wave with

H = 0.2 cos (109f -lex- ay A/m

is incident on an air boundary at z = 0, find

(a) 0 rand0,

(b) k

(c) The wavelength in the dielectric and air

(d) The incident E

(e) The transmitted and reflected E

(f) The Brewster angle

* 10.45 A plane wave in air with

E = (8ax + 6a,. + 5aj) sin (wt + 3x - Ay) V/m

is incident on a copper slab in y > 0. Find u and the reflected wave. Assume copper is a
perfect conductor. (Hint: Write down the field components in both media and match the
boundary conditions.)

10.46 A polarized wave is incident from air to polystyrene with fx = no, e = 2.6e at Brewster
angle. Determine the transmission angle.
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CHAPTER 11

11.1. Show that Exs = Aejk0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
k0 = ω

√
µ0ε0 and any φ and A: We take

d2

dz2 Ae
jk0z+φ = (jk0)

2Aejk0z+φ = −k2
0Exs

11.2. Let E(z, t) = 200 sin 0.2z cos 108tax + 500 cos(0.2z+ 50◦) sin 108tay V/m. Find:
a) E at P(0, 2, 0.6) at t = 25 ns: Obtain

EP (t = 25) = 200 sin [(0.2)(0.6)] cos(2.5)ax + 500 cos [(0.2)(0.6)+ 50(2π)/360] sin(2.5)ay
= −19.2ax + 164ay V/m

b) |E| at P at t = 20 ns:

EP (t = 20) = 200 sin [(0.2)(0.6)] cos(2.0)ax + 500 cos [(0.2)(0.6)+ 50(2π)/360] sin(2.0)ay
= −9.96ax + 248ay V/m

Thus |EP | =
√
(9.96)2 + (248)2 = 249 V/m.

c) Es at P : Es = 200 sin 0.2zax − j500 cos(0.2z+ 50◦)ay . Thus

EsP = 200 sin [(0.2)(0.6)] ax − j500 cos [(0.2)(0.6)+ 2π(50)/360] ay
= 23.9ax − j273ay V/m

11.3. An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m. Find
a) β: Since we have a uniform plane wave, β = ω/c, where we identify ω = 108 sec−1. Thus
β = 108/(3 × 108) = 0.33 rad/m.

b) λ: We know λ = 2π/β = 18.9 m.

c) E(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns: Use E(x, t) = −η0H(x, t) = −(377)(10) cos(108t −
βx) = −3.77 × 103 cos(108t − βx). The vector direction of E will be −az, since we require that
S = E × H, where S is x-directed. At the given point, the relevant coordinate is x = 0.1. Using
this, along with t = 10−9 sec, we finally obtain

E(x, t) = −3.77 × 103 cos[(108)(10−9)− (0.33)(0.1)]az = −3.77 × 103 cos(6.7 × 10−2)az

= −3.76 × 103az V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
Es = (40 − j30)e−j20zax V/m. Find:

a) ω: From the given expression, we identify β = 20 rad/m. Then ω = cβ = (3 × 108)(20) =
6.0 × 109 rad/s.

b) β = 20 rad/m from part a.
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11.4. (continued)
c) f = ω/2π = 956 MHz.

d) λ = 2π/β = 2π/20 = 0.314 m.

e) Hs : In free space, we find Hs by dividing Es by η0, and assigning vector components such that
Es × Hs gives the required direction of wave travel: We find

Hs = 40 − j30

377
e−j20zay = (0.11 − j0.08)e−j20z ay A/m

f) H(z, t) at P(6,−1, 0.07), t = 71 ps:

H(z, t) = Re
[
Hse

jωt
]

=
[
0.11 cos(6.0 × 109t − 20z)+ 0.08 sin(6.0 × 109t − 20z)

]
ay

Then

H(.07, t = 71ps) =
[
0.11 cos

[
(6.0 × 109)(7.1 × 10−11)− 20(.07)

]
+ .08 sin

[
(6.0 × 109)(7.1 × 10−11)− 20(.07)

]]
ay

= [0.11(0.562)− 0.08(0.827)]ay = −6.2 × 10−3ay A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hs = (4 + j10)(2ax + jay)e−jβz A/m.

a) Find numerical values for ω, λ, and β: First, ω = 2π × 150 × 106 = 3π × 108 sec−1. Second,
for a uniform plane wave in free space, λ = 2πc/ω = c/f = (3 × 108)/(1.5 × 108) = 2 m.
Third, β = 2π/λ = π rad/m.

b) Find H(z, t) at t = 1.5 ns, z = 20 cm: Use

H(z, t) = Re{Hse
jωt } = Re{(4 + j10)(2ax + jay)(cos(ωt − βz)+ j sin(ωt − βz)}

= [8 cos(ωt − βz)− 20 sin(ωt − βz)] ax − [10 cos(ωt − βz)+ 4 sin(ωt − βz)] ay

. Now at the given position and time, ωt −βz = (3π × 108)(1.5 × 10−9)−π(0.20) = π/4. And
cos(π/4) = sin(π/4) = 1/

√
2. So finally,

H(z = 20cm, t = 1.5ns) = − 1√
2

(
12ax + 14ay

) = −8.5ax − 9.9ay A/m

c) What is |E|max? Have |E|max = η0|H |max , where

|H |max = √
Hs · H∗

s = [4(4 + j10)(4 − j10)+ (j)(−j)(4 + j10)(4 − j10)]1/2 = 24.1 A/m

Then |E|max = 377(24.1) = 9.08 kV/m.
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11.6. Let µR = εR = 1 for the field E(z, t) = (25ax − 30ay) cos(ωt − 50z)V/m.

a) Find ω: ω = cβ = (3 × 108)(50) = 15.0 × 109 s−1.

b) Determine the displacement current density, Jd(z, t):

Jd(z, t) = ∂D
∂t

= −ε0ω(25ax − 30ay) sin(ωt − 50z)

= (−3.32ax + 3.98ay) sin(1.5 × 1010t − 50z) A/m2

c) Find the total magnetic flux 	 passing through the rectangle defined by 0 < x < 1, y = 0,
0 < z < 1, at t = 0: In free space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

H(z, t) =
(

25

η0
ay + 30

η0
ax

)
cos(ωt − 50z) A/m

Then B(z, t) = µ0H(z, t) = (1/c)(25ay + 30ax) cos(ωt − 50z) Wb/m2, where µ0/η0 =√
µ0ε0 = 1/c. The flux at t = 0 is now

	 =
∫ 1

0

∫ 1

0
B · ay dx dz =

∫ 1

0

25

c
cos(50z) dz = 25

50(3 × 108)
sin(50) = −0.44 nWb

11.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a certain lossless
material is (2ay − j5az)e−j25x A/m. Knowing that the maximum amplitude of E is 1500 V/m, find β,
η, λ, vp, εR , µR , and H(x, y, z, t): First, from the phasor expression, we identify β = 25 m−1 from the
argument of the exponential function. Next, we evaluate H0 = |H| = √

H · H∗ = √
22 + 52 = √

29.
Then η = E0/H0 = 1500/

√
29 = 278.5 
. Then λ = 2π/β = 2π/25 = .25 m = 25 cm. Next,

vp = ω

β
= 2π × 400 × 106

25
= 1.01 × 108 m/s

Now we note that

η = 278.5 = 377

√
µR

εR
⇒ µR

εR
= 0.546

And
vp = 1.01 × 108 = c√

µRεR
⇒ µRεR = 8.79

We solve the above two equations simultaneously to find εR = 4.01 and µR = 2.19. Finally,

H(x, y, z, t) = Re
{
(2ay − j5az)e−j25xejωt

}
= 2 cos(2π × 400 × 106t − 25x)ay + 5 sin(2π × 400 × 106t − 25x)az

= 2 cos(8π × 108t − 25x)ay + 5 sin(8π × 108t − 25x)az A/m
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11.8. Let the fields, E(z, t) = 1800 cos(107πt − βz)ax V/m and H(z, t) = 3.8 cos(107πt − βz)ay A/m,
represent a uniform plane wave propagating at a velocity of 1.4 × 108 m/s in a perfect dielectric. Find:

a) β = ω/v = (107π)/(1.4 × 108) = 0.224 m−1.

b) λ = 2π/β = 2π/.224 = 28.0 m.

c) η = |E|/|H| = 1800/3.8 = 474
.

d) µR: Have two equations in the two unknowns, µR and εR: η = η0
√
µR/εR and β = ω

√
µRεR/c.

Eliminate εR to find

µR =
[
βcη

ωη0

]2

=
[
(.224)(3 × 108)(474)

(107π)(377)

]2

= 2.69

e) εR = µR(η0/η)
2 = (2.69)(377/474)2 = 1.70.

11.9. A certain lossless material has µR = 4 and εR = 9. A 10-MHz uniform plane wave is propagating in
the ay direction with Ex0 = 400 V/m and Ey0 = Ez0 = 0 at P(0.6, 0.6, 0.6) at t = 60 ns.

a) Find β, λ, vp, and η: For a uniform plane wave,

β = ω
√
µε = ω

c

√
µRεR = 2π × 107

3 × 108

√
(4)(9) = 0.4π rad/m

Then λ = (2π)/β = (2π)/(0.4π) = 5 m. Next,

vp = ω

β
= 2π × 107

4π × 10−1 = 5 × 107 m/s

Finally,

η =
√
µ

ε
= η0

√
µR

εR
= 377

√
4

9
= 251 


b) Find E(t) (at P ): We are given the amplitude at t = 60 ns and at y = 0.6 m. Let the maximum
amplitude be Emax , so that in general, Ex = Emax cos(ωt − βy). At the given position and time,

Ex = 400 = Emax cos[(2π × 107)(60 × 10−9)− (4π × 10−1)(0.6)] = Emax cos(0.96π)

= −0.99Emax

So Emax = (400)/(−0.99) = −403 V/m. Thus at P, E(t) = −403 cos(2π × 107t) V/m.

c) Find H(t): First, we note that if E at a given instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, η is real, and we are
allowed to write H(t) = E(t)/η, where η is treated as negative and real. Thus

H(t) = Hz(t) = Ex(t)

η
= −403

−251
cos(2π × 10−7t) = 1.61 cos(2π × 10−7t) A/m
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11.10. Given a 20MHz uniform plane wave with Hs = (6ax − j2ay)e−jz A/m, assume propagation in a
lossless medium characterized by εR = 5 and an unknown µR .

a) Find λ, vp, µR , and η: First, β = 1, so λ = 2π/β = 2π m. Next, vp = ω/β = 2π × 20 × 106 =
4π × 107 m/s. Then, µR = (β2c2)/(ω2εR) = (3 × 108)2/(4π × 107)2(5) = 1.14.
Finally, η = η0

√
µR/εR = 377

√
1.14/5 = 180.

b) Determine E at the origin at t = 20ns: We use the relation |E| = η|H| and note that for positive z
propagation, a positive x component of H is coupled to a negative y component of E, and a negative
y component of H is coupled to a negativex component of E. We obtain Es = −η(6ay+j2ax)e−jz.
Then E(z, t) = Re

{
Esejωt

} = −6η cos(ωt − z)ay + 2η sin(ωt − z)ax = 360 sin(ωt − z)ax −
1080 cos(ωt − z)ay . With ω = 4π × 107 sec−1, t = 2 × 10−8 s, and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)ax − 1080(−0.809)ay = 212ax + 874ay V/m.

11.11. A 2-GHz uniform plane wave has an amplitude ofEy0 = 1.4 kV/m at (0, 0, 0, t = 0) and is propagating
in the az direction in a medium where ε′′ = 1.6×10−11 F/m, ε′ = 3.0×10−11 F/m, andµ = 2.5µH/m.
Find:

a) Ey at P(0, 0, 1.8cm) at 0.2 ns: To begin, we have the ratio, ε′′/ε′ = 1.6/3.0 = 0.533. So

α = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

− 1




1/2

= (2π × 2 × 109)

√
(2.5 × 10−6)(3.0 × 10−11)

2

[√
1 + (.533)2 − 1

]1/2 = 28.1 Np/m

Then

β = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

+ 1




1/2

= 112 rad/m

Thus in general,
Ey(z, t) = 1.4e−28.1z cos(4π × 109t − 112z) kV/m

Evaluating this at t = 0.2 ns and z = 1.8 cm, find

Ey(1.8 cm, 0.2 ns) = 0.74 kV/m

b) Hx at P at 0.2 ns: We use the phasor relation, Hxs = −Eys/η where

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.5 × 10−6

3.0 × 10−11

1√
1 − j (.533)

= 263 + j65.7 = 271� 14◦ 


So now

Hxs = −Eys
η

= − (1.4 × 103)e−28.1ze−j112z

271ej14◦ = −5.16e−28.1ze−j112ze−j14◦
A/m

Then
Hx(z, t) = −5.16e−28.1z cos(4π × 10−9t − 112z− 14◦)

This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

Hx(1.8 cm, 0.2 ns) = −3.0 A/m
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11.12. The plane wave Es = 300e−jkxay V/m is propagating in a material for which µ = 2.25 µH/m, ε′ = 9
pF/m, and ε′′ = 7.8 pF/m. If ω = 64 Mrad/s, find:

a) α: We use the general formula, Eq. (35):

α = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

− 1




1/2

= (64 × 106)

√
(2.25 × 10−6)(9 × 10−12)

2

[√
1 + (.867)2 − 1

]1/2 = 0.116 Np/m

b) β: Using (36), we write

β = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

+ 1




1/2

= .311 rad/m

c) vp = ω/β = (64 × 106)/(.311) = 2.06 × 108 m/s.

d) λ = 2π/β = 2π/(.311) = 20.2 m.

e) η: Using (39):

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.25 × 10−6

9 × 10−12

1√
1 − j (.867)

= 407 + j152 = 434.5ej.36 


f) Hs : With Es in the positive y direction (at a given time) and propagating in the positive x direction,
we would have a positive z component of Hs , at the same time. We write (with jk = α + jβ):

Hs = Es

η
az = 300

434.5ej.36 e
−jkxaz = 0.69e−αxe−jβxe−j.36az

= 0.69e−.116xe−j.311xe−j.36az A/m

g) E(3, 2, 4, 10ns): The real instantaneous form of E will be

E(x, y, z, t) = Re
{

Esejωt
}

= 300e−αx cos(ωt − βx)ay

Therefore

E(3, 2, 4, 10ns) = 300e−.116(3) cos[(64 × 106)(10−8)− .311(3)]ay = 203 V/m

11.13. Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 
 for a uniform plane wave propagating in the az
direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′: We begin with

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
= 450 + j60

and
jk = jω

√
µε′

√
1 − j (ε′′/ε′) = 0.2 + j1.5
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11.13. (continued) Then

ηη∗ = µ

ε′
1√

1 + (ε′′/ε′)2
= (450 + j60)(450 − j60) = 2.06 × 105 (1)

and

(jk)(jk)∗ = ω2µε′
√

1 + (ε′′/ε′)2 = (0.2 + j1.5)(0.2 − j1.5) = 2.29 (2)

Taking the ratio of (2) to (1),

(jk)(jk)∗

ηη∗ = ω2(ε′)2
(

1 + (ε′′/ε′)2
)

= 2.29

2.06 × 105
= 1.11 × 10−5

Then with ω = 3 × 108,

(ε′)2 = 1.11 × 10−5

(3 × 108)2
(
1 + (ε′′/ε′)2

) = 1.23 × 10−22(
1 + (ε′′/ε′)2

) (3)

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

α2

β2 =
√

1 + (ε′′/ε′)2√
1 + (ε′′/ε′)2

= (0.2)2

(1.5)2

We solve this to find ε′′/ε′ = 0.271. Substituting this result into (3) gives ε′ = 1.07 × 10−11 F/m.
Since ε′′/ε′ = 0.271, we then find ε′′ = 2.90 × 10−12 F/m. Finally, using these results in either (1) or
(2) we find µ = 2.28 × 10−6 H/m. Summary: µ = 2.28 × 10−6 H/m,

ε′ = 1.07 × 10−11 F/m, and ε′′ = 2.90 × 10−12 F/m.

11.14. A certain nonmagnetic material has the material constants ε′R = 2 and ε′′/ε′ = 4 × 10−4 at ω = 1.5
Grad/s. Find the distance a uniform plane wave can propagate through the material before:

a) it is attenuated by 1 Np: First, ε′′ = (4 × 104)(2)(8.854 × 10−12) = 7.1 × 10−15 F/m. Then,
since ε′′/ε′ << 1, we use the approximate form for α, given by Eq. (51) (written in terms of ε′′):

α
.= ωε′′

2

√
µ

ε′
= (1.5 × 109)(7.1 × 10−15)

2

377√
2

= 1.42 × 10−3 Np/m

The required distance is now z1 = (1.42 × 10−3)−1 = 706 m

b) the power level is reduced by one-half: The governing relation is e−2αz1/2 = 1/2, or z1/2 =
ln 2/2α = ln 2/2(1.42 × 10−3) = 244 m.

c) the phase shifts 360◦: This distance is defined as one wavelength, where λ = 2π/β

= (2πc)/(ω
√
ε′R) = [2π(3 × 108)]/[(1.5 × 109)

√
2] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculate the wavelength in centimeters and the attenuation in nepers per meter if the wave is propagating
in a non-magnetic material for which

a) ε′R = 1 and ε′′R = 0: In a non-magnetic material, we would have:

α = ω

√
µ0ε0ε

′
R

2



√

1 +
(
ε′′R
ε′R

)2

− 1




1/2
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11.15. (continued) and

β = ω

√
µ0ε0ε

′
R

2



√

1 +
(
ε′′R
ε′R

)2

+ 1




1/2

With the given values of ε′R and ε′′R , it is clear that β = ω
√
µ0ε0 = ω/c, and so

λ = 2π/β = 2πc/ω = 3 × 1010/1010 = 3 cm. It is also clear that α = 0.

b) ε′R = 1.04 and ε′′R = 9.00 × 10−4: In this case ε′′R/ε
′
R << 1, and so β

.= ω

√
ε′R/c = 2.13 cm−1.

Thus λ = 2π/β = 2.95 cm. Then

α
.= ωε′′

2

√
µ

ε′
= ωε′′R

2

√
µ0ε0√
ε′R

= ω

2c

ε′′R√
ε′R

= 2π × 1010

2 × 3 × 108

(9.00 × 10−4)√
1.04

= 9.24 × 10−2 Np/m

c) ε′R = 2.5 and ε′′R = 7.2: Using the above formulas, we obtain

β = 2π × 1010
√

2.5

(3 × 1010)
√

2



√

1 +
(

7.2

2.5

)2

+ 1




1/2

= 4.71 cm−1

and so λ = 2π/β = 1.33 cm. Then

α = 2π × 1010
√

2.5

(3 × 108)
√

2



√

1 +
(

7.2

2.5

)2

− 1




1/2

= 335 Np/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
ωCR, whereR is the parallel resistance. Assume an idealized parallel plate capacitor having a dielecric
characterized by σ , ε′, and µR . Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

Z =
R

(
1

jωC

)
R +

(
1

jωC

) = R
1 − jRωC

1 + (RωC)2
= R

1 − jQ

1 +Q2

Now R = d/(σA) and C = ε′A/d, and so Q = ωε′/σ = 1/l.t. Then the power factor is P.F =
cos[tan−1(−Q)] = 1/

√
1 +Q2.
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11.17. Let η = 250 + j30
 and jk = 0.2 + j2 m−1 for a uniform plane wave propagating in the az direction
in a dielectric having some finite conductivity. If |Es | = 400 V/m at z = 0, find:

a) Pz,av at z = 0 and z = 60 cm: Assume x-polarization for the electric field. Then

Pz,av = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
400e−αze−jβzax × 400

η∗ e
−αzejβzay

}

= 1

2
(400)2e−2αzRe

{
1

η∗

}
az = 8.0 × 104e−2(0.2)zRe

{
1

250 − j30

}
az

= 315 e−2(0.2)z az W/m2

Evaluating at z = 0, obtain Pz,av(z = 0) = 315 az W/m2,

and at z = 60 cm, Pz,av(z = 0.6) = 315e−2(0.2)(0.6)az = 248 az W/m2.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. I will demonstrate: In the first method, we use Poynting’s theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fields to read:

−∇ · Pz,av =< J · E >

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting’s theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

< J · E >= −∇ · Pz,av = − d

dz
315 e−2(0.2)z = (0.4)(315)e−2(0.2)z = 126e−0.4z W/m3

At z = 60 cm, this becomes < J · E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J · E >= σ < E2 >. We use

jk = jω
√
µε′

√
1 − j (ε′′/ε′)

and

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)

We take the ratio,
jk

η
= jωε′

[
1 − j

(
ε′′

ε′

)]
= jωε′ + ωε′′

Identifying σ = ωε′′, we find

σ = Re

{
jk

η

}
= Re

{
0.2 + j2

250 + j30

}
= 1.74 × 10−3 S/m

Now we find the dissipated power per volume:

σ < E2 >= 1.74 × 10−3
(

1

2

)(
400e−0.2z

)2
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that

Re

{
1

η∗

}
= σ

2α

This relation does not hold using the numbers as given in the problem statement and the value of σ
found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r, t) if Es = 400e−j2xay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus Hs = (400/η0)e

−j2xaz =
1.06e−j2xaz A/m. In real form, the field are E(x, t) = 400 cos(ωt−2x)ay and H(x, t) = 1.06 cos(ωt−
2x)az. Now P(r, t) = P(x, t) = E(x, t)× H(x, t) = 424.4 cos2(ωt − 2x)ax W/m2.

b) Find P at t = 0 for r = (a, 5, 10), where a = 0,1,2, and 3: At t = 0, we find from part a,
P(a, 0) = 424.4 cos2(2a), which leads to the values (in W/m2): 424.4 at a = 0, 73.5 at a = 1,
181.3 at a = 2, and 391.3 at a = 3.

c) Find P at the origin for T = 0, 0.2T , 0.4T , and 0.6T , where T is the oscillation period. At
the origin, we have P(0, t) = 424.4 cos2(ωt) = 424.4 cos2(2πt/T ). Using this, we obtain
the following values (in W/m2): 424.4 at t = 0, 42.4 at t = 0.2T , 277.8 at t = 0.4T , and
277.8 at t = 0.6T .

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylinders is filled with a perfect dielectric for which ε = 10−9/4π F/m and µR = 1. If E in this region
is (500/ρ) cos(ωt − 4z)aρ V/m, find:

a) ω, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl equations,
beginning with ∇ × E = −∂B/∂t , where in this case,

∇ × E = ∂Eρ

∂z
aφ = 2000

ρ
sin(ωt − 4z)aφ = −∂Bφ

∂t
aφ

So

Bφ =
∫

2000

ρ
sin(ωt − 4z)dt = 2000

ωρ
cos(ωt − 4z) T

Then

Hφ = Bφ

µ0
= 2000

(4π × 10−7)ωρ
cos(ωt − 4z) A/m

We next use ∇ × H = ∂D/∂t , where in this case

∇ × H = −∂Hφ
∂z

aρ + 1

ρ

∂(ρHφ)

∂ρ
az

where the second term on the right hand side becomes zero when substituting our Hφ . So

∇ × H = −∂Hφ
∂z

aρ = − 8000

(4π × 10−7)ωρ
sin(ωt − 4z)aρ = ∂Dρ

∂t
aρ

And

Dρ =
∫

− 8000

(4π × 10−7)ωρ
sin(ωt − 4z)dt = 8000

(4π × 10−7)ω2ρ
cos(ωt − 4z) C/m2
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11.19a. (continued) Finally, using the given ε,

Eρ = Dρ

ε
= 8000

(10−16)ω2ρ
cos(ωt − 4z) V/m

This must be the same as the given field, so we require

8000

(10−16)ω2ρ
= 500

ρ
⇒ ω = 4 × 108 rad/s

b) H(ρ, z, t): From part a, we have

H(ρ, z, t) = 2000

(4π × 10−7)ωρ
cos(ωt − 4z)aφ = 4.0

ρ
cos(4 × 108t − 4z)aφ A/m

c) P(ρ, φ, z): This will be

P(ρ, φ, z) = E × H = 500

ρ
cos(4 × 108t − 4z)aρ × 4.0

ρ
cos(4 × 108t − 4z)aφ

= 2.0 × 10−3

ρ2 cos2(4 × 108t − 4z)az W/m2

d) the average power passing through every cross-section 8 < ρ < 20 mm, 0 < φ < 2π . Using
the result of part c, we find Pavg = (1.0 × 103)/ρ2az W/m2. The power through the given
cross-section is now

P =
∫ 2π

0

∫ .020

.008

1.0 × 103

ρ2 ρ dρ dφ = 2π × 103 ln

(
20

8

)
= 5.7 kW

11.20. If Es = (60/r) sin θ e−j2r aθ V/m, and Hs = (1/4πr) sin θ e−j2r aφ A/m in free space, find the average
power passing outward through the surface r = 106, 0 < θ < π/3, and 0 < φ < 2π .

Pavg = 1

2
Re

{
Es × H∗

s

} = 15 sin2 θ

2πr2 ar W/m2

Then, the requested power will be

	 =
∫ 2π

0

∫ π/3

0

15 sin2 θ

2πr2 ar · ar r2 sin θdθdφ = 15
∫ π/3

0
sin3 θ dθ

= 15

(
−1

3
cos θ(sin2 θ + 2)

) ∣∣∣π/3
0

= 25

8
= 3.13 W

Note that the radial distance at the surface, r = 106 m, makes no difference, since the power density
dimishes as 1/r2.
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11.21. The cylindrical shell, 1 cm < ρ < 1.2 cm, is composed of a conducting material for which σ = 106

S/m. The external and internal regions are non-conducting. Let Hφ = 2000 A/m at ρ = 1.2 cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:

∮
H · dL = 2πρ(2000) = 2π(1.2 × 10−2)(2000) = 48π A = Iencl

Then in this case

J = I

Area
az = 48

(1.44 − 1.00)× 10−4 az = 1.09 × 106 az A/m2

With this result we again use Ampere’s circuital law to find H everywhere within the shell as a
function of ρ (in meters):

Hφ1(ρ) = 1

2πρ

∫ 2π

0

∫ ρ

.01
1.09 × 106 ρ dρ dφ = 54.5

ρ
(104ρ2 − 1) A/m (.01 < ρ < .012)

Outside the shell, we would have

Hφ2(ρ) = 48π

2πρ
= 24/ρ A/m (ρ > .012)

Inside the shell (ρ < .01 m), Hφ = 0 since there is no enclosed current.

b) Find E everywhere: We use

E = J
σ

= 1.09 × 106

106 az = 1.09 az V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find P everywhere: Use

P = E × H = 1.09 az × 54.5

ρ
(104ρ2 − 1) aφ

= −59.4

ρ
(104ρ2 − 1) aρ W/m2 (.01 < ρ < .012 m)

Outside the shell,

P = 1.09 az × 24

ρ
aφ = −26

ρ
aρ W/m2 (ρ > .012 m)
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than δ. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

δ = 1√
πfµσ

= 1√
π(4 × 108)(4π × 10−7)(5.8 × 107)

= 3.3 × 10−6m = 3.3µm

Now, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(2 × 10−3)(5.8 × 107)(3.3 × 10−6)
= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

Rout = a

b
Rin = 2

7
(0.42) = 0.12 ohms/m

c) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, or R = Rin + Rout = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of 1.2 × 107 S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at a frequency of

a) dc: In this case the current density is uniform over the entire tube cross-section. We write:

R(dc) = L

σA
= 1

(1.2 × 107)π(.012 − .0092)
= 1.4 × 10−3 
/m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is

δ(20MHz) = [πfµ0σ ]−1/2 = [π(20 × 106)(4π × 10−7)(1.2 × 107)]−1/2 = 3.25 × 10−5 m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

R(20MHz) = L

σA
= 1

2πbδ
= 1

(1.2 × 107)(2π(.01))(3.25 × 10−5)
= 4.1 × 10−2 
/m

c) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be δ = 3.25×10−6

m. The resistance (using the other formula) is R(2GHz) = 4.1 × 10−1 
/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 106 S/m and µR = 500 for the
stainless steel interior, and find the depth of penetration:

δ = 1√
πfµσ

= 1√
π(2.45 × 109)(4π × 10−7)(1.2 × 106)

= 9.28 × 10−6m = 9.28µm

b) Let Es = 50 � 0◦ V/m at the surface of the conductor, and plot a curve of the amplitude of Es vs.
the angle of Es as the field propagates into the stainless steel: Since the conductivity is high, we
use (62) to write α

.= β
.= √

πfµσ = 1/δ. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e−αze−jβz = 50e−z/δe−jz/δ = 50 exp(−z/9.28)︸ ︷︷ ︸
amplitude

exp(−j z/9.28︸ ︷︷ ︸
angle

)

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of e−x versus
x, where x = z/9.28; the starting amplitude is 50 and the 1/e amplitude (at z = 9.28 µm) is 18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and a velocity of 3 × 105 m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

f = v

λ
= 3 × 105

3 × 10−4 = 109 Hz = 1 GHz

Next, for a good conductor,

δ = λ

2π
= 1√

πfµσ
⇒ σ = 4π

λ2fµ
= 4π

(9 × 10−8)(109)(4π × 10−7)
= 1.1 × 105 S/m

11.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have σ = 1.6 × 107 S/m.

a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

δ = 1√
πfµσ

= 1√
π(2.4 × 108)(4π × 10−7)(1.6 × 107)

= 2.57 × 10−6m = 2.57µm

Then, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(0.8 × 10−3)(1.6 × 107)(2.57 × 10−6)
= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Rout = a

b
Rin = 0.8

4
(4.84) = 0.97 ohms/m

The net resistance per length is then the sum, R = Rin + Rout = 5.81 ohms/m.
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11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax is air-filled. From those sections, we find (in free space)

C = 2πε0

ln(b/a)
= 2π(8.854 × 10−12)

ln(4/.8)
= 3.46 × 10−11 F/m

L = µ0

2π
ln(b/a) = 4π × 10−7

2π
ln(4/.8) = 3.22 × 10−7 H/m

c) Find α and β if α + jβ = √
jωC(R + jωL): Taking real and imaginary parts of the given

expression, we find

α = Re
{√
jωC(R + jωL)

}
= ω

√
LC√
2



√

1 +
(
R

ωL

)2

− 1




1/2

and

β = Im
{√
jωC(R + jωL)

}
= ω

√
LC√
2



√

1 +
(
R

ωL

)2

+ 1




1/2

These can be found by writing out α = Re
{√
jωC(R + jωL)

} = (1/2)
√
jωC(R + jωL)+c.c.,

where c.c denotes the complex conjugate. The result is squared, terms collected, and the square root
taken. Now, using the values ofR,C, andL found in parts a and b, we find α = 3.0 × 10−2 Np/m
and β = 50.3 rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having ω = 4 × 1010 rad/s:

a) αTef/αbrass: From the appendix we find ε′′/ε′ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, ε′R = 2.1. For brass, we find σ = 1.5×107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations:

α
.= σ

2

√
µ

ε′
=

(
ε′′

ε′

)(
1

2

)
ω
√
µε′ = 1

2

(
ε′′

ε′

)
ω

c

√
ε′R

β
.= ω

√
µε′

[
1 + 1

8

(
ε′′

ε′

)]
.= ω

√
µε′ = ω

c

√
ε′R

For brass (good conductor) we have

α
.= β

.=
√
πfµσbrass =

√
π

(
1

2π

)
(4 × 1010)(4π × 10−7)(1.5 × 107) = 6.14 × 105 m−1

Now

αTef

αbrass
=

1/2
(
ε′′/ε′

)
(ω/c)

√
ε′R√

πfµσbrass
= (1/2)(.0003)(4 × 1010/3 × 108)

√
2.1

6.14 × 105
= 4.7 × 10−8

b)

λTef

λbrass
= (2π/βTef)

(2π/βbrass)
= βbrass

βTef
= c

√
πfµσbrass

ω

√
ε′R Tef

= (3 × 108)(6.14 × 105)

(4 × 1010)
√

2.1
= 3.2 × 103
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11.27. (continued)

c)
vTef

vbrass
= (ω/βTef)

(ω/βbrass)
= βbrass

βTef
= 3.2 × 103 as before

11.28. A uniform plane wave in free space has electric field given by Es = 10e−jβxaz + 15e−jβxay V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave has linear polarization, with the field vector

in the yz plane at angle φ = tan−1(10/15) = 33.7◦ to the y axis.

b) Find Hs : With propagation in forward x, we would have

Hs = −10

377
e−jβxay + 15

377
e−jβxaz A/m = −26.5e−jβxay + 39.8e−jβxaz mA/m

c) determine the average power density in the wave in W/m2: Use

Pavg = 1

2
Re

{
Es × H∗

s

} = 1

2

[
(10)2

377
ax + (15)2

377
ax

]
= 0.43ax W/m2 or Pavg = 0.43 W/m2

11.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direction. The
electric field is given by the appropriate form of Eq. (80).

a) Determine the magnetic field phasor, Hs :
We begin, using (80), with Es = E0(ax + jay)e−jβz. We find the two components of Hs

separately, using the two components of Es . Specifically, the x component of Es is associated
with a y component of Hs , and the y component of Es is associated with a negative x component
of Hs . The result is

Hs = E0

η0

(
ay − jax

)
e−jβz

b) Determine an expression for the average power density in the wave in W/m2 by direct application
of Eq. (57): We have

Pz,avg = 1

2
Re(Es × H∗

s ) = 1

2
Re

(
E0(ax + jay)e−jβz × E0

η0
(ay − jax)e+jβz

)

= E2
0

η0
az W/m2 (assuming E0 is real)
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11.30. The electric field of a uniform plane wave in free space is given by Es = 10(ay + jaz)e−j25x .
a) Determine the frequency, f : Use

f = βc

2π
= (25)(3 × 108)

2π
= 1.2 GHz

b) Find the magnetic field phasor, Hs : With the Poynting vector in the positive x direction, a positive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

Hs = 10

η0

[
az − jay

]
e−j25x

c) Describe the polarization of the wave: This is most clearly seen by first converting the given field
to real instantaneous form:

E(x, t) = Re
{

Esejωt
}

= 10
[
cos(ωt − 25x)ay − sin(ωt − 25x)az

]
At x = 0, this becomes,

E(0, t) = 10
[
cos(ωt)ay − sin(ωt)az

]
With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a lossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (εRy)
differs from that seen by waves polarized along x (εRx). Suppose εRx = 2.15, εRy = 2.10, and the
wave electric field at input is polarized at 45◦ to the positive x and y axes. Assume free space wavelength
λ.

a) Determine the shortest length of the material such that the wave as it emerges from the output end
is circularly polarized: With the input field at 45◦, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the components is π/2. Our
requirement over length L is thus βxL− βyL = π/2, or

L = π

2(βx − βy)
= πc

2ω(
√
εRx − √

εRy)

With the given values, we find,

L = (58.3)πc

2ω
= 58.3

λ

4
= 14.6 λ

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. The field can
thus be written as E = E0(ay − jax), which is left circular polarization.
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11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of π radians develops between the two components. At the input, we can write the field as
Es(0) = E0(ax + ay). After propagating through length L, we would have,

Es(L) = E0[e−jβxLax + e−jβyLay] = E0e
−jβxL[ax + e−j (βy−βx)Lay]

where (βy − βx)L = −π (since βx > βy), and so Es(L) = E0e
−jβxL[ax − ay]. With the reversal of

the y component, the wave polarization is rotated by 90◦, but is still linear polarization.

11.33. Given a wave for which Es = 15e−jβzax +18e−jβzejφay V/m, propagating in a medium characterized
by complex intrinsic impedance, η.

a) Find Hs : With the wave propagating in the forward z direction, we find:

Hs = 1

η

[
−18ejφax + 15ay

]
e−jβz A/m

b) Determine the average power density in W/m2: We find

Pz,avg = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
(15)2

η∗ + (18)2

η∗

}
= 275 Re

{
1

η∗

}
W/m2

11.34. Given the general elliptically-polarized wave as per Eq. (73):

Es = [Ex0ax + Ey0e
jφay]e−jβz

a) Show, using methods similar to those of Example 11.7, that a linearly polarized wave results when
superimposing the given field and a phase-shifted field of the form:

Es = [Ex0ax + Ey0e
−jφay]e−jβzejδ

where δ is a constant: Adding the two fields gives

Es,tot =
[
Ex0

(
1 + ejδ

)
ax + Ey0

(
ejφ + e−jφejδ

)
ay

]
e−jβz

=


Ex0e

jδ/2
(
e−jδ/2 + ejδ/2

)
︸ ︷︷ ︸

2 cos(δ/2)

ax + Ey0e
jδ/2

(
e−jδ/2ejφ + e−jφejδ/2

)
︸ ︷︷ ︸

2 cos(φ−δ/2)

ay


 e−jβz

This simplifies to Es,tot = 2
[
Ex0 cos(δ/2)ax + Ey0 cos(φ − δ/2)ay

]
ejδ/2e−jβz, which is lin-

early polarized.

b) Find δ in terms of φ such that the resultant wave is polarized along x: By inspecting the part a
result, we achieve a zero y component when 2φ − δ = π (or odd multiples of π ).
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CHAPTER 12

12.1. A uniform plane wave in air,E+
x1 = E+

x10 cos(1010t−βz)V/m, is normally-incident on a copper surface
at z = 0. What percentage of the incident power density is transmitted into the copper? We need to
find the reflection coefficient. The intrinsic impedance of copper (a good conductor) is

ηc =
√
jωµ

σ
= (1 + j)

√
ωµ

2σ
= (1 + j)

√
1010(4π × 107)

2(5.8 × 107)
= (1 + j)(.0104)

Note that the accuracy here is questionable, since we know the conductivity to only two significant
figures. We nevertheless proceed: Using η0 = 376.7288 ohms, we write

� = ηc − η0

ηc + η0
= .0104 − 376.7288 + j.0104

.0104 + 376.7288 + j.0104
= −.9999 + j.0001

Now |�|2 = .9999, and so the transmitted power fraction is 1 − |�|2 = .0001, or about 0.01% is
transmitted.

12.2. The plane y = 0 defines the boundary between two different dielectrics. For y < 0, ε′R1 = 1, µ1 = µ0,
and ε′′R1 = 0; and for y > 0, ε′R2 = 5, µ2 = µ0, and ε′′R2 = 0. Let E+

z1 = 150 cos(ωt − 8y)V/m, and
find

a) ω: Have β = 8 = ω/c ⇒ ω = 8c = 2.4 × 109 sec−1.

b) H+
1 : WithE in the z direction, and propagation in the forward y direction,H will lie in the positive

x direction, and its amplitude will be Hx = Ey/η0 in region 1.
Thus H+

1 = (150/η0) cos(ωt − 8y)ax = 0.40 cos(2.4 × 109t − 8y)ax A/m.

c) H−
1 : First,

E−
z1 = �E+

z1 = η0/
√

5 − η0/1

η0/
√

5 + η0/1
= 1 − √

5

1 + √
5
E+
z1 = −0.38E+

z1

Then

H−
x1 = +(0.38/η0)E

+
z1 = 0.38(150)

377
cos(ωt + 8y)

So finally, H−
x1 = 0.15 cos(2.4 × 109t + 8y)ax A/m.

12.3. A uniform plane wave in region 1 is normally-incident on the planar boundary separating regions 1 and
2. If ε′′1 = ε′′2 = 0, while ε′R1 = µ3

R1 and ε′R2 = µ3
R2, find the ratio ε′R2/ε

′
R1 if 20% of the energy in

the incident wave is reflected at the boundary. There are two possible answers. First, since |�|2 = .20,
and since both permittivities and permeabilities are real, � = ±0.447. we then set up

� = ±0.447 = η2 − η1

η2 + η1
=
η0

√
(µR2/ε

′
R2)− η0

√
(µR1/ε

′
R1)

η0

√
(µR2/ε

′
R2)+ η0

√
(µR1/ε

′
R1)

=
√
(µR2/µ

3
R2)−

√
(µR1/µ

3
R1)√

(µR2/µ
3
R2)+

√
(µR1/µ

3
R1)

= µR1 − µR2

µR1 + µR2

200



12.3. (continued) Therefore

µR2

µR1
= 1 ∓ 0.447

1 ± 0.447
= (0.382, 2.62) ⇒ ε′R2

ε′R1
=

(
µR2

µR1

)3

= (0.056, 17.9)

12.4. The magnetic field intensity in a region where ε′′ = 0 is given as H = 5 cosωt cosβz ay A/m, where
ω = 5 Grad/s and β = 30 rad/m. If the amplitude of the associated electric field intensity is 2kV/m,
find

a) µ and ε′ for the medium: In phasor form, the magnetic field is Hys = H0e
−jβz + H0e

+βz =
5 cosβz ⇒ H0 = 2.5. The electric field will be x directed, and is Exs = η(2.5)e−jβz −
η(2.5)e+jβz = (2j)η(2.5) sin βz. Given the electric field amplitude of 2 kV/m, we write 2×103 =
5η, or η = 400�. Now η = 400 = η0

√
µr/ε

′
R and we also have β = 30 = (ω/c)

√
µRε

′
R . We

solve these two equations simultaneously for µR and ε′R to find µR = 1.91 and ε′R = 1.70.
Therefore µ = 1.91 × 4π × 10−7 = 2.40µH/m and ε′ = 1.70 × 8.854 × 10−12 = 15.1 pF/m.

b) E: From part a, electric field in phasor form is Exs = j2 sin βz kV/m, and so, in real form:
E(z, t) = Re(Exsejωt )ax = 2 sin βz sinωt ax kV/m with ω and β as given.

12.5. The region z < 0 is characterized by ε′R = µR = 1 and ε′′R = 0. The total E field here is given as the
sum of the two uniform plane waves, Es = 150e−j10z ax + (50 � 20◦)ej10z ax V/m.

a) What is the operating frequency? In free space, β = k0 = 10 = ω/c = ω/3 × 108. Thus,
ω = 3 × 109 s−1, or f = ω/2π = 4.7 × 108 Hz.

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected
wave: Use

� = Er

Einc
= 50ej20◦

150
= 1

3
ej20◦ = 0.31 + j0.11 = η − η0

η + η0

Now

η = η0

(
1 + �

1 − �

)
= 377

(
1 + 0.31 + j0.11

1 − 0.31 − j0.31

)
= 691 + j177 �

c) At what value of z (−10 cm < z < 0) is the total electric field intensity a maximum amplitude?
We found the phase of the reflection coefficient to be φ = 20◦ = .349rad, and we use

zmax = −φ
2β

= −.349

20
= −0.017 m = −1.7 cm

12.6. Region 1, z < 0, and region 2, z > 0, are described by the following parameters: ε′1 = 100 pF/m,
µ1 = 25 µH/m, ε′′1 = 0, ε′2 = 200 pF/m, µ2 = 50 µH/m, and ε′′2/ε

′
2 = 0.5.

If E+
1 = 600e−α1z cos(5 × 1010t − β1z)ax V/m, find:

a) α1: From Eq. (35), Chapter 11, we note that since ε′′1 = 0, it follows that α1 = 0.

b) β1: β1 = ω
√
µ1ε

′
1 = (5 × 1010)

√
(25 × 10−6)(100 × 10−12) = 2.50 × 103 rad/m.

c) E+
s1 = 600e−j2.50×103zax V/m.

d) E−
s1: To find this, we need to evaluate the reflection coefficient, which means that we first need the

two intrinsic impedances. First, η1 = √
µ1/ε

′
1 =

√
(25 × 10−6)/(100 × 10−12) = 500.
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12.6d) (continued) Next, using Eq. (39), Chapter 11,

η2 =
√
µ2

ε′2

1√
1 − j (ε′′2/ε

′
2)

=
√

50 × 10−6

2 × 10−10

1√
1 − j0.5

= 460 + j109

Then

� = η2 − η1

η2 + η1
= 460 + j109 − 500

460 + j109 + 500
= −2.83 × 10−2 + j1.16 × 10−1 = 0.120ej104◦

Now we multiply E+
s1 by � and reverse the propagation direction to obtain

E−
s1 = 71.8ej104◦

ej2.5×103z V/m

e) E+
s2: This wave will experience loss in region 2, along with a different phase constant. We need

to evaluate α2 and β2. First, using Eq. (35), Chapter 11,

α2 = ω

√
µ2ε

′
2

2



√

1 +
(
ε′′2
ε′2

)2

− 1




1/2

= (5 × 1010)

√
(50 × 106)(200 × 10−12)

2

[√
1 + (0.5)2 − 1

]1/2 = 1.21 × 103 Np/m

Then, using Eq. (36), Chapter 11,

β2 = ω

√
µ2ε

′
2

2



√

1 +
(
ε′′2
ε′2

)2

+ 1




1/2

= 5.15 × 103 rad/m

Then, the transmission coefficient will be

τ = 1 + � = 1 − 2.83 × 10−2 + j1.16 × 10−1 = 0.972ej7◦

The complex amplitude of E+
s2 is then found by multiplying the amplitude of E+

s1 by τ . The field
in region 2 is then constructed by using the resulting amplitude, along with the attenuation and
phase constants that are appropriate for region 2. The result is

E+
s2 = 587e−1.21×103zej7◦

e−j5.15×103z V/m

12.7. The semi-infinite regions z < 0 and z > 1 m are free space. For 0 < z < 1 m, ε′R = 4, µR = 1,
and ε′′R = 0. A uniform plane wave with ω = 4 × 108 rad/s is travelling in the az direction toward the
interface at z = 0.

a) Find the standing wave ratio in each of the three regions: First we find the phase constant in the
middle region,

β2 =
ω

√
ε′R
c

= 2(4 × 108)

3 × 108 = 2.67 rad/m
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12.7a. (continued) Then, with the middle layer thickness of 1 m, β2d = 2.67 rad. Also, the intrinsic impedance

of the middle layer is η2 = η0/

√
ε′R = η0/2. We now find the input impedance:

ηin = η2

[
η0 cos(β2d)+ jη2 sin(β2d)

η2 cos(β2d)+ jη0 sin(β2d)

]
= 377

2

[
2 cos(2.67)+ j sin(2.67)

cos(2.67)+ j2 sin(2.67)

]
= 231 + j141

Now, at the first interface,

�12 = ηin − η0

ηin + η0
= 231 + j141 − 377

231 + j141 + 377
= −.176 + j.273 = .325� 123◦

The standing wave ratio measured in region 1 is thus

s1 = 1 + |�12|
1 − |�12| = 1 + 0.325

1 − 0.325
= 1.96

In region 2 the standing wave ratio is found by considering the reflection coefficient for waves incident
from region 2 on the second interface:

�23 = η0 − η0/2

η0 + η0/2
= 1 − 1/2

1 + 1/2
= 1

3

Then

s2 = 1 + 1/3

1 − 1/3
= 2

Finally, s3 = 1, since no reflected waves exist in region 3.

b) Find the location of the maximum |E| for z < 0 that is nearest to z = 0. We note that the phase
of �12 is φ = 123◦ = 2.15 rad. Thus

zmax = −φ
2β

= −2.15

2(4/3)
= −.81 m

12.8. A wave starts at point a, propagates 100m through a lossy dielectric for which α = 0.5 Np/m, reflects
at normal incidence at a boundary at which � = 0.3 + j0.4, and then returns to point a. Calculate the
ratio of the final power to the incident power after this round trip: Final power, Pf , and incident power,
Pi , are related through

Pf = Pie
−2αL|�|2e−2αL ⇒ Pf

Pi
= |0.3 + j0.4|2e−2(0.5)100 = 3.5 × 10−88(!)

Try measuring that.

12.9. Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (µ = µ0, ε′′ = 0). A uniform plane
wave traveling in the az direction has a radian frequency of 3 × 1010 rad/s. Its wavelengths in the two
regions are λ1 = 5 cm and λ2 = 3 cm. What percentage of the energy incident on the boundary is

a) reflected; We first note that

ε′R1 =
(

2πc

λ1ω

)2

and ε′R2 =
(

2πc

λ2ω

)2
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12.9a. (continued) Therefore ε′R1/ε
′
R2 = (λ2/λ1)

2. Then with µ = µ0 in both regions, we find

� = η2 − η1

η2 + η1
=
η0

√
1/ε′R2 − η0

√
1/ε′R1

η0

√
1/ε′R2 + η0

√
1/ε′R1

=
√
ε′R1/ε

′
R2 − 1√

ε′R1/ε
′
R2 + 1

= (λ2/λ1)− 1

(λ2/λ1)+ 1

= λ2 − λ1

λ2 + λ1
= 3 − 5

3 + 5
= −1

4

The fraction of the incident energy that is reflected is then |�|2 = 1/16 = 6.25 × 10−2.

b) transmitted? We use part a and find the transmitted fraction to be
1 − |�|2 = 15/16 = 0.938.

c) What is the standing wave ratio in region 1? Use

s = 1 + |�|
1 − |�| = 1 + 1/4

1 − 1/4
= 5

3
= 1.67

12.10. In Fig. 12.1, let region 2 be free space, while µR1 = 1, ε′′R1 = 0, and ε′R1 is unknown. Find ε′R! if
a) the amplitude of E−

1 is one-half that of E+
1 : Since region 2 is free space, the reflection coefficient

is

� = |E−
1 |

|E+
1 | = η0 − η1

η0 + η1
=
η0 − η0/

√
ε′R1

η0 + η0/

√
ε′R1

=
√
ε′R1 − 1√
ε′R1 + 1

= 1

2
⇒ ε′R1 = 9

.

b) P−
1,avg is one-half of P+

1,avg: This time

|�|2 =

∣∣∣∣∣∣∣
√
ε′R1 − 1√
ε′R1 + 1

∣∣∣∣∣∣∣
2

= 1

2
⇒ ε′R1 = 34

c) |E1|min is one-half |E1|max : Use

|E1|max
|E1|min = s = 1 + |�|

1 − |�| = 2 ⇒ |�| = � = 1

3
=

√
ε′R1 − 1√
ε′R1 + 1

⇒ ε′R1 = 4

12.11. A 150 MHz uniform plane wave in normally-incident from air onto a material whose intrinsic impedance
is unknown. Measurements yield a standing wave ratio of 3 and the appearance of an electric field
minimum at 0.3 wavelengths in front of the interface. Determine the impedance of the unknown
material: First, the field minimum is used to find the phase of the reflection coefficient, where

zmin = − 1

2β
(φ + π) = −0.3λ ⇒ φ = 0.2π

where β = 2π/λ has been used. Next,

|�| = s − 1

s + 1
= 3 − 1

3 + 1
= 1

2
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12.11. (continued) So we now have

� = 0.5ej0.2π = ηu − η0

ηu + η0

We solve for ηu to find
ηu = η0(1.70 + j1.33) = 641 + j501 �

12.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For
seawater, σ = 4 S/m, and ε′R = 78.

a) Determine the fractions of the incident power that are reflected and transmitted: First we find the
loss tangent:

σ

ωε′
= 4

2π(50 × 106)(78)(8.854 × 10−12)
= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor
at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic impedance is
ηs = √

πfµ/σ(1 + j), and the reflection coefficient becomes

� =
√
πfµ/σ (1 + j)− η0√
πfµ/σ (1 + j)+ η0

where
√
πfµ/σ =

√
π(50 × 106)(4π × 10−7)/4 = 7.0. The fraction of the power reflected is

Pr

Pi
= |�|2 = [

√
πfµ/σ − η0]2 + πfµ/σ

[
√
πfµ/σ + η0]2 + πfµ/σ

= [7.0 − 377]2 + 49.0

[7.0 + 377]2 + 49.0
= 0.93

The transmitted fraction is then

Pt

Pi
= 1 − |�|2 = 1 − 0.93 = 0.07

b) Qualitatively, how will these answers change (if at all) as the frequency is increased? Within
the limits of our good conductor approximation (loss tangent greater than about ten), the reflected
power fraction, using the formula derived in part a, is found to decrease with increasing frequency.
The transmitted power fraction thus increases.

12.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab of plex-
iglas (ε′R = 3.45, ε′′R = 0). Calculate the fractions of the incident power that are reflected and trans-
mitted. Also, describe the polarizations of the reflected and transmitted waves. First, the impedance of
the plexiglas will be η = η0/

√
3.45 = 203�. Then

� = 203 − 377

203 + 377
= −0.30

The reflected power fraction is thus |�|2 = 0.09. The total electric field in the plane of the interface
must rotate in the same direction as the incident field, in order to continually satisfy the boundary
condition of tangential electric field continuity across the interface. Therefore, the reflected wave will
have to be left circularly polarized in order to make this happen. The transmitted power fraction is now

1 − |�|2 = 0.91. The transmitted field will be right circularly polarized (as the incident field) for the
same reasons.
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12.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect conductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume positive
z travel for the incident electric field. Then, with reflection coefficient, � = −1, the incident and
reflected fields will add to give the total field:

Etot = Ei + Er = E0(ax + jay)e−jβz − E0(ax + jay)e+jβz

= E0


(e−jβz − ejβz

)
︸ ︷︷ ︸

−2j sin(βz)

ax + j
(
e−jβz − ejβz

)
︸ ︷︷ ︸

−2j sin(βz)

ay


 = 2E0 sin(βz)

[
ay − jax

]

b) Determine the real instantaneous form of the result of part a:

E(z, t) = Re
{

Etot ejωt
}

= 2E0 sin(βz)
[
cos(ωt)ay + sin(ωt)ax

]
c) Describe the wave that is formed: This is a standing wave exhibiting circular polarization in

time. At each location along the z axis, the field vector rotates clockwise in the xy plane, and has
amplitude (constant with time) given by 2E0 sin(βz).

12.15. Consider these regions in which ε′′ = 0: region 1, z < 0, µ1 = 4µH/m and ε′1 = 10 pF/m; region 2,
0 < z < 6 cm, µ2 = 2µH/m, ε′2 = 25 pF/m; region 3, z > 6 cm, µ3 = µ1 and ε′3 = ε′1.

a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto the
boundary at z = 0 will have no reflection? This frequency gives the condition β2d = π , where
d = 6 cm, and β2 = ω

√
µ2ε

′
2 Therefore

β2d = π ⇒ ω = π

(.06)
√
µ2ε

′
2

⇒ f = 1

0.12
√
(2 × 10−6)(25 × 10−12)

= 1.2 GHz

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
β2 = (2π × 5 × 107)

√
(2 × 10−6)(25 × 10−12) = 2.22 rad/m. Thus β2d = 2.22(.06) = 0.133.

The intrinsic impedance of regions 1 and 3 is η1 = η3 =
√
(4 × 10−6)/(10−11) = 632�. The

input impedance at the first interface is now

ηin = 283

[
632 cos(.133)+ j283 sin(.133)

283 cos(.133)+ j632 sin(.133)

]
= 589 − j138 = 605� − .23

The reflection coefficient is now

� = ηin − η1

ηin + η1
= 589 − j138 − 632

589 − j138 + 632
= .12 � − 1.7

The standing wave ratio is now

s = 1 + |�|
1 − |�| = 1 + .12

1 − .12
= 1.27

12.16. A uniform plane wave in air is normally-incident onto a lossless dielectric plate of thickness λ/8, and
of intrinsic impedance η = 260 �. Determine the standing wave ratio in front of the plate. Also find
the fraction of the incident power that is transmitted to the other side of the plate: With the a thickness
of λ/8, we have βd = π/4, and so cos(βd) = sin(βd) = 1

√
2. The input impedance thus becomes

ηin = 260

[
377 + j260

260 + j377

]
= 243 − j92 �
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12.16. (continued)

The reflection coefficient is then

� = (243 − j92)− 377

(243 − j92)+ 377
= −0.19 − j0.18 = 0.26� − 2.4rad

Therefore

s = 1 + .26

1 − .26
= 1.7 and 1 − |�|2 = 1 − (.26)2 = 0.93

12.17. Repeat Problem 12.16 for the cases in which the frequency is
a) doubled: If this is true, then d = λ/4, and thus ηin = (260)2/377 = 179. The reflection coefficient

becomes

� = 179 − 377

179 + 377
= −0.36 ⇒ s = 1 + .36

1 − .36
= 2.13

Then 1 − |�|2 = 1 − (.36)2 = 0.87.

b) quadrupled: Now, d = λ/2, and so we have a half-wave section surrounded by air. Transmission
will be total, and so s = 1 and 1 − |�|2 = 1.

12.18. In Fig. 12.6, let η1 = η3 = 377�, and η2 = 0.4η1. A uniform plane wave is normally incident from
the left, as shown. Plot a curve of the standing wave ratio, s, in the region to the left:

a) as a function of l if f = 2.5GHz: With η1 = η3 = η0 and with η2 = 0.4η0, Eq. (41) becomes

ηin = 0.4η0

[
cos(βl)+ j0.4 sin(βl)

0.4 cos(βl)+ j sin(βl)

]
×
[

0.4 cos(βl)− j sin(βl)

0.4 cos(βl)− j sin(βl)

]

= η0

[
1 − j1.05 sin(2βl)

cos2(βl)+ 6.25 sin2(βl)

]

Then � = (ηin − η0)/(ηin + η0), from which we find

|�| =
√
��∗ =

[[
1 − cos2(βl)− 6.25 sin2(βl)

]2 + (1.05)2 sin2(2βl)[
1 + cos2(βl)+ 6.25 sin2(βl)

]2 + (1.05)2 sin2(2βl)

]1/2

Then s = (1 + |�|)/(1 − |�|). Now for a uniform plane wave, β = ω
√
µε = nω/c. Given that

η2 = 0.4η0 = η0/n, we find n = 2.5 (assuming µ = µ0). Thus, at 2.5 GHz,

βl = nω

c
l = (2.5)(2π)(2.5 × 109)

3 × 108 l = 12.95 l (l in m) = 0.1295 l (l in cm)

Using this in the expression for |�|, and calculating s as a function of l in cm leads to the first plot
shown on the next page.

b) as a function of frequency if l = 2cm. In this case we use

βl = (2.5)(2π)(0.02)

3 × 108 f = 1.04 × 10−10 f (f in Hz) = 0.104 f (f in GHz)

Using this in the expression for |�|, and calculating s as a function of f in GHz leads to the second
plot shown on the next page. MathCad was used in both cases.
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12.18 (continued) Plots for parts a and b

12.19. You are given four slabs of lossless dielectric, all with the same intrinsic impedance, η, known to
be different from that of free space. The thickness of each slab is λ/4, where λ is the wavelength as
measured in the slab material. The slabs are to be positioned parallel to one another, and the combination
lies in the path of a uniform plane wave, normally-incident. The slabs are to be arranged such that the
air spaces between them are either zero, one-quarter wavelength, or one-half wavelength in thickness.
Specify an arrangement of slabs and air spaces such that

a) the wave is totally transmitted through the stack: In this case, we look for a combination of half-
wave sections. Let the inter-slab distances bed1, d2, andd3 (from left to right). Two possibilities are
i.) d1 = d2 = d3 = 0, thus creating a single section of thickness λ, or ii.) d1 = d3 = 0, d2 = λ/2,
thus yielding two half-wave sections separated by a half-wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here is to make
d1 = d2 = d3 = λ/4. Thus every thickness is one-quarter wavelength. The impedances transform

as follows: First, the input impedance at the front surface of the last slab (slab 4) is ηin,1 = η2/η0.
We transform this back to the back surface of slab 3, moving through a distance of λ/4 in free
space: ηin,2 = η2

0/ηin,1 = η3
0/η

2. We next transform this impedance to the front surface of slab 3,
producing ηin,3 = η2/ηin,2 = η4/η3

0. We continue in this manner until reaching the front surface
of slab 1, where we find ηin,7 = η8/η7

0. Assuming η < η0, the ratio ηn/ηn−1
0 becomes smaller as

n increases (as the number of slabs increases). The reflection coefficient for waves incident on the
front slab thus gets close to unity, and approaches 1 as the number of slabs approaches infinity.

12.20. The 50MHz plane wave of Problem 12.12 is incident onto the ocean surface at an angle to the normal
of 60◦. Determine the fractions of the incident power that are reflected and transmitted for

a) s polarization: To review Problem 12, we first we find the loss tangent:

σ

ωε′
= 4

2π(50 × 106)(78)(8.854 × 10−12)
= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor at
50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with µ = µ0, the intrinsic
impedance is ηs = √

πfµ/σ(1 + j) = 7.0(1 + j).
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12.20a. (continued)
Next we need the angle of refraction, which means that we need to know the refractive index of
seawater at 50MHz. For a uniform plane wave in a good conductor, the phase constant is

β = nsea ω

c

.=
√
πfµσ ⇒ nsea

.= c

√
µσ

4πf
= 26.8

Then, using Snell’s law, the angle of refraction is found:

sin θ2 = nsea

n1
sin θ1 = 26.8 sin(60◦) ⇒ θ2 = 1.9◦

This angle is small enough so that cos θ2
.= 1. Therefore, for s polarization,

�s
.= ηs2 − ηs1

ηs2 + ηs1
= 7.0(1 + j)− 377/ cos 60◦

7.0(1 + j)+ 377/ cos 60◦ = −0.98 + j0.018 = 0.98� 179◦

The fraction of the power reflected is now |�s |2 = 0.96. The fraction transmitted is then 0.04.

b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for p polar-
ization is

�p
.= ηp2 − ηp1

ηp2 + ηp1
= 7.0(1 + j)− 377 cos 60◦

7.0(1 + j)+ 377 cos 60◦ = −0.93 + j0.069 = 0.93� 176◦

The fraction of the power reflected is now |�p|2 = 0.86. The fraction transmitted is then 0.14.

12.21. A right-circularly polarized plane wave in air is incident at Brewster’s angle onto a semi-infinite slab
of plexiglas (ε′R = 3.45, ε′′R = 0, µ = µ0).

a) Determine the fractions of the incident power that are reflected and transmitted: In plexiglas,
Brewster’s angle is θB = θ1 = tan−1(ε′R2/ε

′
R1) = tan−1(

√
3.45) = 61.7◦. Then the angle of

refraction is θ2 = 90◦ − θB (see Example 12.9), or θ2 = 28.3◦. With incidence at Brewster’s
angle, all p-polarized power will be transmitted — only s-polarized power will be reflected. This
is found through

�s = η2s − η1s

η2s + η1s
= .614η0 − 2.11η0

.614η0 + 2.11η0
= −0.549

where η1s = η1 sec θ1 = η0 sec(61.7◦) = 2.11η0,
and η2s = η2 sec θ2 = (η0/

√
3.45) sec(28.3◦) = 0.614η0. Now, the reflected power fraction

is |�|2 = (−.549)2 = .302. Since the wave is circularly-polarized, the s-polarized component
represents one-half the total incident wave power, and so the fraction of the total power that is
reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that is transmitted is then
the remainder, or 85%.

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized com-
ponent is transmitted, the reflected wave will be entirely s-polarized (linear). The transmitted
wave, while having all the incident p-polarized power, will have a reduced s-component, and so
this wave will be right-elliptically polarized.
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12.22. A dielectric waveguide is shown in Fig. 12.18 with refractive indices as labeled. Incident light enters
the guide at angle φ from the front surface normal as shown. Once inside, the light totally reflects
at the upper n1 − n2 interface, where n1 > n2. All subsequent reflections from the upper an lower
boundaries will be total as well, and so the light is confined to the guide. Express, in terms of n1 and
n2, the maximum value of φ such that total confinement will occur, with n0 = 1. The quantity sin φ is
known as the numerical aperture of the guide.

From the illustration we see that φ1 maximizes when θ1 is at its minimum value. This minimum will
be the critical angle for the n1 − n2 interface, where sin θc = sin θ1 = n2/n1. Let the refracted angle
to the right of the vertical interface (not shown) be φ2, where n0 sin φ1 = n1 sin φ2. Then we see that
φ2 + θ1 = 90◦, and so sin θ1 = cosφ2. Now, the numerical aperture becomes

sin φ1max = n1

n0
sin φ2 = n1 cos θ1 = n1

√
1 − sin2 θ1 = n1

√
1 − (n2/n1)2 =

√
n2

1 − n2
2

Finally, φ1max = sin−1
(√

n2
1 − n2

2

)
is the numerical aperture angle.

12.23. Suppose that φ1 in Fig. 12.18 is Brewster’s angle, and that θ1 is the critical angle. Find n0 in terms of
n1 and n2: With the incoming ray at Brewster’s angle, the refracted angle of this ray (measured from
the inside normal to the front surface) will be 90◦ − φ1. Therefore, φ1 = θ1, and thus sin φ1 = sin θ1.
Thus

sin φ1 = n1√
n2

0 + n2
1

= sin θ1 = n2

n1
⇒ n0 = (n1/n2)

√
n2

1 − n2
2

Alternatively, we could have used the result of Problem 12.22, in which it was found that sin φ1 =
(1/n0)

√
n2

1 − n2
2, which we then set equal to sin θ1 = n2/n1 to get the same result.

12.24. A Brewster prism is designed to pass p-polarized light without any reflective loss. The prism of Fig.
12.19 is made of glass (n = 1.45), and is in air. Considering the light path shown, determine the apex
angle, α: With entrance and exit rays at Brewster’s angle (to eliminate reflective loss), the interior ray
must be horizontal, or parallel to the bottom surface of the prism. From the geometry, the angle between
the interior ray and the normal to the prism surfaces that it intersects is α/2. Since this angle is also
Brewster’s angle, we may write:

α = 2 sin−1
(

1√
1 + n2

)
= 2 sin−1

(
1√

1 + (1.45)2

)
= 1.21 rad = 69.2◦

12.25. In the Brewster prism of Fig. 12.19, determine for s-polarized light the fraction of the incident power
that is transmitted through the prism: We use �s = (ηs2 − ηs1)/(ηs2 + ηs1), where

ηs2 = η2

cos(θB2)
= η2

n/
√

1 + n2
= η0

n2

√
1 + n2

and
ηs1 = η1

cos(θB1)
= η1

1/
√

1 + n2
= η0

√
1 + n2
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12.25. (continued) Thus, at the first interface, � = (1−n2)/(1+n2). At the second interface, � will be equal
but of opposite sign to the above value. The power transmission coefficient through each interface is
1 − |�|2, so that for both interfaces, we have, with n = 1.45:

Ptr

Pinc
=

(
1 − |�|2

)2 =
[

1 −
(
n2 − 1

n2 + 1

)2
]2

= 0.76

12.26. Show how a single block of glass can be used to turn a p-polarized beam of iight through 180◦, with the
light suffering, in principle, zero reflective loss. The light is incident from air, and the returning beam
(also in air) may be displaced sideways from the incident beam. Specify all pertinent angles and use
n = 1.45 for glass. More than one design is possible here.

The prism below is designed such that light enters at Brewster’s angle, and once inside, is turned around
using total reflection. Using the result of Example 12.9, we find that with glass, θB = 55.4◦, which, by
the geometry, is also the incident angle for total reflection at the back of the prism. For this to work,
the Brewster angle must be greater than or equal to the critical angle. This is in fact the case, since
θc = sin−1(n2/n1) = sin−1(1/1.45) = 43.6◦.

12.27. Using Eq. (59) in Chapter 11 as a starting point, determine the ratio of the group and phase velocities
of an electromagnetic wave in a good conductor. Assume conductivity does not vary with frequency:
In a good conductor:

β =
√
πfµσ =

√
ωµσ

2
→ dβ

dω
= 1

2

[ωµσ
2

]−1/2 µσ

2

Thus
dω

dβ
=

(
dβ

dω

)−1

= 2

√
2ω

µσ
= vg and vp = ω

β
= ω√

ωµσ/2
=

√
2ω

µσ

Therefore vg/vp = 2.
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12.28. Over a certain frequency range, the refractive index of a certain material varies approximately linearly
with frequency: n(ω)

.= na + nb(ω − ωa), where na , nb, and ωa are constants. Using β = nω/c:
a) determine the group velocity as a function (or perhaps not a function) of frequency:
vg = (dβ/dω)−1, where

dβ

dω
= d

dω

[
naω

c
+ nb(ω − ωa)ω

c

]
= 1

c
[na + nb(2ω − ωa)]

so that
vg(ω) = c [na + nb(2ω − ωa)]

−1

b) determine the group dispersion parameter, β2:

β2 = d2β

dω2

∣∣∣
ω0

= d

dω

1

c
[na + nb(2ω − ωa)]

∣∣∣
ω0

= 2nb/c

c) Discuss the implications of these results, if any, on pulse broadening: The point of this problem was
to show that higher order terms (involving d3β/dω3 and higher) in the Taylor series expansion,
Eq. (89), do not exist if the refractive index varies linearly with ω. These higher order terms
would be necessary in cases involving pulses of exremely large bandwidth, or in media exhibiting
complicated variations in their ω-β curves over relatively small frequency ranges. With d2β/dω2

constant, the three-term Taylor expansion of Eq. (89) describes the phase constant of this medium
exactly. The pulse will broaden and will acquire a frequency sweep (chirp) that is precisely linear
with time. Additionally, a pulse of a given bandwidth will broaden by the same amount, regardless
of what carrier frequency is used.

12.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which β2 = 10 ps2/km.
Over what distance will the pulse spread to twice its initial width? After propagation, the width is
T ′ =

√
T 2 + (�τ)2 = 2T . Thus �τ = √

3T , where �τ = β2z/T . Therefore

β2z

T
=

√
3T or z =

√
3T 2

β2
=

√
3(5 ps)2

10 ps2/km
= 4.3 km

12.30. A T = 20 ps transform-limited pulse propagates through 10 km of a dispersive channel for which β2 =
12 ps2/km. The pulse then propagates through a second 10 km channel for which β2 = −12 ps2/km.
Describe the pulse at the output of the second channel and give a physical explanation for what hap-
pened.
Our theory of pulse spreading will allow for changes in β2 down the length of the channel. In fact, we
may write in general:

�τ = 1

T

∫ L

0
β2(z) dz

Having β2 change sign at the midpoint, yields a zero �τ , and so the pulse emerges from the output
unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases with time over
the pulse envelope) during the first half of the channel. When β2 switches sign, the pulse begins to
acquire a negative chirp in the second half, which, over an equal distance, will completely eliminate
the chirp acquired during the first half. The pulse, if originally transform-limited at input, will emerge,
again transform-limited, at its original width. More generally, complete dispersion compensation is
achieved using a two-segment channel when β2L = −β ′

2L
′, assuming dispersion terms of higher order

than β2 do not exist.
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